2024 | Voinot, C. et al. | Causal Survival Analysis: practical recommandation | |
2024 | Khellaf, R., Bellet, A. & Josse, J. | Federated Causal Inference: Multi-Centric ATE Estimation beyond Meta-Analysis.
Submitted. | pdf |
2024 | Boughdiri, A., Josse, J. & Scornet, E. | Quantifying Treatment Effects: Estimating Risk Ratios in Causal Inference.
Submitted. | pdf |
2024 | Zaffran, M., Josse, J., Romano, Y., Dieuleveut, A. | Predictive Uncertainty Quantification with Missing
Covariates | pdf |
2024 | Gauss et al. | Pilot deployment of a machine-learning enhanced prediction of need for hemorrhage resuscitation after trauma–the ShockMatrix pilot study.
BMC Medical Informatics and Decision Making. | pdf |
2024 | Näf, J., & Josse, J. | What is a Good Imputation Under MAR Missingness?
Submitted. | pdf
slides |
2024 | Sussman, H., Chambaz, A. & Josse, J, Aegerter, P. Wargon, M., Bacry E. | Probabilistic Prediction of Arrivals and Hospitalizations in Emergency Departments in Ile-de-France.
International Journal of Medical Informatics. | pdf |
2024 | Zhao, P., Gatulle, N, James, A., Josse, J. & Chambaz, A. | Learning, Evaluating and Analysising An Individualized Decision Support
Rule with Application to Early Intervention in Intensive Care Unit. | |
2024 | Stempfle, L., James, A., Josse, J., Gauss, T. & Johansson, F. | Expert Study on Interpretable Machine Learning Models with Missing Data.
Machine Learning for Health (ML4H) symposium. | pdf |
2023 | Bénard, C., Naf, J. & Josse, J. | MMD-based Variable Importance for Distributional Random Forest.
AISTAT2024.
| pdf |
2023 | Sussman, H., Chambaz, A. & Josse, J. | Adaptive Conformal, an R package for adaptive conformal inference.
Computo. | pdf |
2023 | Zhao, P., Chambaz, A., Josse, J., Yang, S. | Positivity-free Policy Learning with Observational Data.
AISTAT2024. | pdf |
2023 | Bénard, C, Josse, J. | Variable importance for causal forests: breaking down
the heterogeneity of treatment effects
Submitted. | pdf |
2023 | Colnet, B, Josse, J., Varoquaux, G., Scornet, E. | Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?
Submitted. | pdf |
2023 | Zaffran, Josse, J. M., Dieuleveut A., Romano, Y. | Conformal prediction with missing values.
ICML2023. | pdf
poster |
2023 | Zhao, P., Josse, J. & Yang, S. | (2023). Efficient and robust transfer learning of optimal individualized
treatment regimes with right-censored survival data.
Submitted. | pdf |
2022-24 | Colnet, B, Josse, J., Varoquaux, G., Scornet, E. | Reweighting the RCT for generalization: finite sample analysis and variable selection.
JRSSA. | pdf |
2022 | Blet et al. | Association between in-ICU red blood cells transfusion and one-year mortality in ICU survivors.
Critical Care. | pdf |
2022 | Colnet, B, Josse, J., Varoquaux, G., Scornet, E. | Generalizing a causal effect: sensitivity analysis and missing covariates.
Journal of Causal Inference. | pdf
slides |
2022 | Gauss et al. | Is Early Norepinephrine Associated with 24-hour Mortality of Blunt Trauma Patients in Haemorrhagic Shock? An International Cohort Study.
Jama Network. | pdf |
2022 | Garaix et al. | Decision-making tools for healthcare structures in times of pandemic.
Anaesthesia Critical Care & Pain Medicine. | pdf |
2022 | Zaffran et al. | Adaptive conformal prediction for time series.
ICML2022. | pdf
slides
video
|
2022 | Perez-Lebel et al. | Benchmarking missing-values approaches for predictive models on health databases.
GigaScience. | pdf |
2021 | Le Morvan, J. Josse, E. Scornet. & G. Varoquaux | What’s a good imputation to predict with missing
values?
Neurips 2021. (Spotlight). | pdf
video
slides
|
2021 | Sportisse, A. et al. | Model-based Clustering with Missing Not At Random Data.
Statistics and Computing. | pdf |
2021 | Mayer, I., Josse, J & Traumbase | Transporting treatment effects with incomplete attributes.
Biometrical Journal | pdf |
2020-2023 | Colnet, B et al. | Causal inference methods for combining randomized trials and observational studies: a review.
Statistical Science. | pdf |
2020 | Le Morvan, J. Josse, M., Moreaux, T, E. Scornet. & G. Varoquaux | Neumiss networks: differential programming for supervised learning with missing values. Neurips2020. (Oral) | pdf
slides
video
slides
video |
2020 | Sbidian et al. | Hydroxychloroquine with or without azithromycin and in-hospital mortality or discharge in patients hospitalized for COVID-19 infection: a cohort study of 4,642 in-patients in France.
Preprint. | pdf |
2020 | Consortium ICUBAM | ICU Bed Availability Monitoring and analysis in the Grand Est région of France during the COVID-19 epidemic.
Statistiques et Société. | pdf
slides |
2020 | A. Sportisse, C. Boyer,
and Josse, J. | Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data.
Neurips2020. | pdf
slides
video
code
|
2020 | A. Sportisse, C. Boyer, A. Dieuleveut, J. Josse. | Debiasing Stochastic Gradient Descent to handle missing values. Neurips2020. | pdf
slides
|
2020 | J.D. Moyer et al. | Trauma reloaded: Trauma registry in the era of data science. Anaesthesia Critical Care & Pain Medicine. | pdf |
2020 | Muzellec, B., Josse, J. Boyer, C. & Cuturi, M.
| Missing Data Imputation using Optimal Transport.
ICML2020. | pdf
slides
videos
code |
2019 | Josse, J., Mayer, I, & Vert, J.P. | MissDeepCausal: causal inference from incomplete data using deep latent variable models.
Preprint. | pdf
|
2020 | Le Morvan, M., N. Prost, J. Josse, E. Scornet. & G. Varoquaux | Linear predictor on linearly-generated data with missing values: non consistency and solutions.
AISTAT2020. | pdf
slides
|
2020 | Descloux, P. , Boyer, C. Josse, J. Sportisse, A. Sardy, S. | Robust Lasso-Zero for sparse corruption and model selection with missing covariates.
Scandinavian Journal of Statistics.
| pdf |
2022 | Mayer, I, Sportisse, A., Josse, J., Vialaneix, N., Tierney, N. | R-miss-tastic: a unified platform for missing values methods and workflows. R journal.
| pdf |
2019-20 | Mayer, I, Josse, J., Wager, S., Sverdr, E., Moyer, J.D. and Gauss, T. | Doubly robust treatment effect estimation with incomplete confounders.
Annals Of Applied Statistics. | pdf
code
slides
videos |
2019-21 | M. Bogdan, W. Jiang, J. Josse, B. Miasojedow and V. Rockova. | Adaptive Bayesian SLOPE – High dimensional Model Selection with Missing Values.
Journal of Computational and Graphical Statistics. | pdf
slides
|
2019-24 | Josse, J., Prost, N., Scornet, E. & Varoquaux, G. | On the consistency of supervised learning with missing values.
Statistical paper. | pdf
slidescode
slides |
2019 | G. Robin, O. Klopp, J. Josse, E. Moulines, and R. Tibshirani | Main effects and interactions in mixed and incomplete data frames.
Journal of the American Statistical Association. | pdf
Package |
2019 | Hamada, S et al. | Effect of Fibrinogen administration on early mortality in traumatic haemorrhagic shock: a propensity score analysis.
Journal of Trauma. | |
2019 | Sportisse, A., Boyer, C. and Josse, J. | Low-rank estimation with missing non at random data.
Statistics and Computing. | pdf
code |
2018 | Josse, J., Husson, F. Robin, G. and Balasubramanian. N. | Imputation of mixed data with multilevel SVD.
Journal of Computational and Graphical Statistics.
| pdf
slides |
2018 | Robin, G, Sardy, S., Moulines, E. and Josse, J. | Low-rank model with covariates for count data
with missing values.
Journal of Multivariate Analysis. | pdf
Package
code
|
2018 | Jiang, W., Lavielle, M. Josse, J. and T. Gauss. | Logistic Regression with Missing Covariates -- Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework.
CSDA. | pdf
slides
Package, code |
2018 | G. Robin, Hoi To Wai, J. Josse, O. Klopp and E. Moulines | Low-rank interactions and sparse additive effects model for large data frames.
NeurIPS 2018. | |
2018 | Josse, J. and Reiter, J. | Introduction to the Special Section on Missing Data.
Statistical Sciences. | pdf |
2018 | Seijo-Pardo, B., Alonso-Betanzos, A., P. Bennett, K. Bol\'on-Canedo, Josse, J., Saeed, M., Guyon, I. | Feature selection in the presence of missing data.
Neurocomputing, ESANN. | |
2017-2018 | Mozharovskyi, P., Husson, F. and Josse, J. | Nonparametric imputation by data depth.
Journal of the American Statistical Association.
| pdf
slides
code |
2017 | Holmes, S and Josse, J. | 50 years of data-sciences, discussion.
Journal of Computational and Graphical Statistics. | pdf |
2017 | Bollmann, S., Cook, Di. Dumas, J., Fox, J., Josse, J., Keyes, O. Strobl, C., Turner, H. and Debelak, R. | A First Survey on the Diversity of the R Community.
R journal. | pdf
slides |
2017 | G. Celeux, J. Jewson, J. Josse, J.M. Marin and C. P. Robert. | Some discussions on the Read Paper "Beyond subjective and objective in statistics" by A. Gelman and C. Hennig.
| pdf |
2017 | Foulley, JL, Celeux, G and Josse, J. | Empirical Bayes approaches to PageRank type
algorithms for rating scientific journals.
Technical report. | pdf
slides |
2016 | Sobczyk, P, Bogdan, M. and Josse, J. | PCA using penalized semi-integrated likelihood.
Journal of Computational and Graphical Statistics. | pdf |
2016 | Fithian, W. and Josse, J. | Multiple Correspondence Analysis & the Multilogit Bilinear Model.
Journal of Multivariate Analysis. | pdf
slides |
2016 | Husson, F., Josse, J. and Saporta, G. | Jan de Leeuw and the French school of data analysis.
Journal of Statistical Software. | pdf |
2016-2017 | Josse, J., Sardy, S. and Wager, S. | denoiseR: a package for low rank matrix estimation.
Preprint. | pdf
Package |
2016 | Groenen, P. and Josse, J.
| Multinomial Multiple Correspondence Analysis.
Preprint. | pdf |
2016 | Fujii, H., Josse, J., Tanioka, M., Miyachi, Y. Husson, F., and Ono, M. | Regulatory T cells in melanoma revisited by a computational clustering of FOXP3+ T cell subpopulations.
Journal of Immunology.
| pdf |
2015 | Audigier, V., Husson, F. and Josse, J. | MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis.
Statistics and Computing. | pdf
slides |
2015-2016 | Josse, J and Wager, S. | Bootstrap-Based Regularization for Low-Rank Matrix Estimation.
Journal of Machine Learning research. | pdf
slides |
2015 | Josse, J. and Sardy, S. | Adaptive Shrinkage of singular values.
Statistics and Computing. | pdf |
2015 | Josse, J and Husson, F.
| missMDA a package to handle missing values in and with multivariate data analysis methods.
Journal of Statistical Software. | pdf |
2015 | Audigier, V., Husson, F. and Josse, J. | Multiple Imputation with Bayesian PCA.
Journal of Statistical Computation and Simulation. | pdf |
2015-2016 | Josse, J. and Holmes, S. | Measuring multivariate association.
Statistics Survey. | pdf |
2014 | Audigier, V., Husson, F. and Josse, J. | A principal components method to impute mixed data.
Advances in Data analysis and Classification.
| pdf
slides |
2014 | Josse, J., Wager, S. and Husson, F.
| Confidence areas for fixed-effects PCA.
Journal of Computational and Graphical Statistics. | pdf
slides |
2014 | Dray, S and Josse, J. | Principal component analysis with missing values: a comparative survey of methods.
Plant Ecology. | pdf |
2014 | Josse, J., van Eeuwijk, F., Piepho, H-P and Denis, J.B. | Another look at Bayesian analysis of AMMI models for genotype-environment data.
Journal of Agricultural, Biological, and Environmental Statistics. | pdf |
2013 | Verbanck, M., Josse, J. and Husson, F. | Regularized PCA to denoise and visualise data.
Statistics and Computing. | pdf |
2013 | Josse, J., Timmerman, M.E. and Kiers, H.A.L.
| Missing values in multi-level simultaneous component analysis.
Chemometrics and Intelligent Laboratory Systems. | pdf |
2013 | Husson, F. and Josse, J. | Handling missing values in Multiple Factor Analysis.
Food Quality and Preferences. | pdf |
2013 | Josse, J and Husson, F. | Handling missing values in exploratory multivariate data analysis methods.
Journal de la SFdS. Paper written for the best Ph.D doctoral thesis prize delivered by the French Statistical Society. | pdf |
2012 | Josse, J., Chavent, M., Liquet, B. and Husson, F.
| Regularized Iterative Multiple Correspondence Analysis.
Journal of Classification. | pdf |
2011 | Josse, J and Husson, F. | Selecting the number of components in PCA using cross-validation approximations.
Computational Statistics and Data Analysis. | pdf |
2011 | Josse, J., Husson, F. and Pagès, J. | Multiple imputation in PCA.
Advances in data analysis and classification. | pdf |
2010 | Josse, J., Husson, F. and Pagès, J. | Principal component methods - hierarchical clustering - partitional clustering: why would we need to choose for visualizing data?
Technical report. | pdf |
2009 | Josse, J., Husson, F. and Pagès, J. | Analyse en Composantes Principales.
Journal de la SFdS. | pdf |
2008 | Josse, J., Husson, F. and Pagès, J. | Testing the significance of the RV coefficient.
Computational Statistics and Data Analysis. | pdf |
2008 | Lê S., Josse, J. and Husson, F. | FactoMineR: an R package for multivariate analysis.
Journal of Statistical Software. | pdf |