An overview of methods to deal with missing values

Julie Josse

CUSO doctoral school in Statistics and Applied Probability

Les Diableret, February 8-9 2022

Academic background:

- Engineer and Assistant Professor in Agronomy University (2007-2015)
- Visiting Researcher + Teaching at Stanford University (18 months)
- Professor at Ecole Polytechnique (IP Paris) (2016-2020). Still Teaching
- Visiting Researcher at Google Brain Paris (2019-2020). Still Collaborating
- Senior Researcher at Inria Montpellier (Sept. 2020-)

Research topics:

- Dimensionality reduction to visualize high dimensional heterogeneous data
- Missing values: supervised learning, inference, matrix completion, MNAR
- <u>Causal inference</u>: estimating treatment effect, combining RCT and observational data, personalized recommendation
- Medical collaborations: Traumabase, IGR, CHU Nancy, Curie, etc.

Implementations - transfert:

- R community: book R for Statistics, R foundation, R Forwards (widen the participation of minorities), R packages, R taskviews
- <u>Rmisstastic</u> https://rmisstastic.netlify.app/

Outline

- Lecture 1: Introduction
 - Single imputation, Multiple imputation
 - Likelihood approaches
- Lecture 2: Low rank methods
 - PCA with missing values (Multiple) Imputation with PCA
 - Practice
 - MNAR data
 - Heterogeneous data
- Lecture 3:
 - Supervised learning with missing values
 - Random Forest with missing values
 - Linear regression with missing values
 - Causal inference with missing values

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Missing values

are everywhere: unanswered questions in a survey, lost data, damaged plants, machines that fail...

"The best thing to do with missing values is not to have any"

 \Rightarrow Still an issue in the "big data" area

Data integration: data from different sources

Traumabase

- 30000 patients
- 250 continuous and categorical variables: heterogeneous
- 20 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	

 $^{^{1}\}mbox{Doubly}$ robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. Annals Of Applied Statistics 2020.

Traumabase

- 30000 patients
- 250 continuous and categorical variables: heterogeneous
- 20 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	
:								·.,

⇒ Estimate causal effect: Administration of the treatment

"tranexamic acid" on the **outcome** mortality for trauma brain patients.

Causal Inference (IPW) with covariates with missing values ¹

 $^{1}\mbox{Doubly}$ robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. Annals Of Applied Statistics 2020.

Traumabase

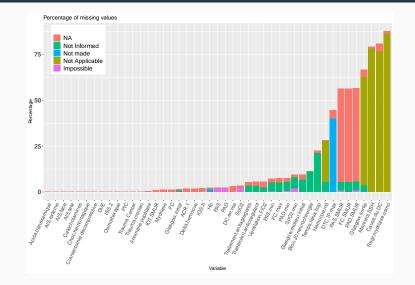
- 30000 patients
- 250 continuous and categorical variables: heterogeneous
- 20 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	shock	
Beaujon	fall	54	m	85	NM	180	yes	
Pitie	gun	26	m	NR	NA	131	no	
Beaujon	moto	63	m	80	3.9	145	yes	
Pitie	moto	30	W	NR	Imp	107	no	
HEGP	knife	16	m	98	2.5	118	no	
:								·

 \Rightarrow **Explain and Predict** platelet levels, hemorrhagic shock given pre-hospital features

 $\underset{values}{\mathsf{Ex\ linear,\ logistic\ regression/\ random\ forests\ }}$ with covariates with missing

Missing values

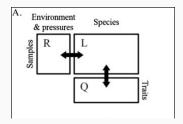


Different types of missing values

Multilevel data/ data integration: Systematic missing variable in one hospital

Contingency tables with side information

- National agency for wildlife and hunting management (ONCFS) data
- Contingency tables: Water (722 wetland sites) bird (species) count data, from 1990-2016 in 5 countries in North Africa
- Additional sites & years info: meteo, geographical (altitude, etc.)



 \Rightarrow Aims: Assess the effect of time on species abundances;

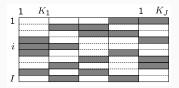
Monitor the population and assess wetlands conservation policies.

 \Rightarrow 70% of missing values in contingency tables 2 3

 $^{^2\,}$ Robin, J, Moulines Sardy. 2019. Low-rank model with covariates for count data with missing values. Journal of Multivariate Analysis.

 $^{^3}$ Robin, Klopp, J, Moulines Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. JASA.

Multi-blocks data set



L'OREAL data: 100 000 women in many countries - 300 questions in groups:

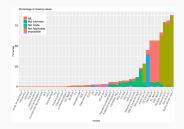
- Self-assessment questionnaire: life style, skin and hair characteristics, care and consumer habits
- Clinical assessments by a dermatologist: facial skin complexion, wrinkles, scalp dryness, greasiness
- Hair assessments by a hair dresser: abundance, volume, breakage, curly
- Skin and Hair photographs and measurements: sebum quantity, etc.
- \Rightarrow Aim: Clustering women for marketing targeting

 \Rightarrow Missing values structured by group ^{4 5}

 4 Handling missing values in exploratory multivariate data analysis. J., Husson. JSFDS 2012.

⁵ Handling missing values in Multiple Factor Analysis. J., Husson. FQP 2013.

Complete-case analysis



Deleting rows with missing values?

?lm, ?glm, na.action = na.omit

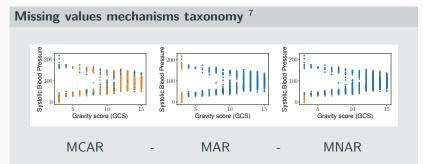
"One of the ironies of Big Data is that missing data play an ever more significant role" $^{\rm 6}$

An $n \times p$ matrix, each entry is missing with probability 0.01

- $p = 5 \implies \approx 95\%$ of rows kept
- $p = 300 \implies \approx 5\%$ of rows kept

 $^{^{\,\,6}{\}rm Zhu},$ Wang, Samworth. 2019. High-dimensional principal component analysis with heterogeneous missingness.

Distribution of missing values



Orange: missing values for Systolic Blood Pressure - Gravity index (GCS) is always observed

MCAR (completely at random): Proba to be missing does not depend on
SBP neither on gravity
MAR: Proba depends on gravity (we do not measure for too severe patients)
MNAR (not at random): Proba depends on SBP (low SBP not measured)

⁷Rubin. 1976. Inference and missing data. *Biometrika*.

Missing values mechanisms

• Random Variables:

- $X \in \mathbb{R}^d$: the complete unvailable data
- $\widetilde{X} \in \{\mathbb{R} \cup \{\mathbb{NA}\}\}^p$: incomplete data (observed), NA: Not Available)
- $M \in \{0,1\}^d$: the missing-data pattern, the mask

obs(M) (resp. mis(M)) indices of the observed (resp. missing) entries.

• <u>Realizations</u>:

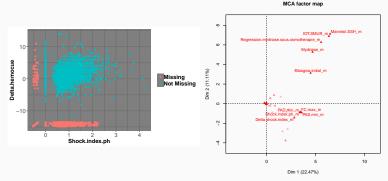
$$\begin{aligned} x &= (1.1, 2.3, 3.1, 8, 5.27) \\ \widetilde{x} &= (1.1, \text{NA}, -3.1, 8, \text{NA}) \\ m &= (0, 1, 0, 0, 1) \\ x_{\text{obs}(m)} &= (1.1, 3.1, 8), \\ x_{\text{mis}(m)} &= (2.3, 5.27) \end{aligned}$$

MCAR⁸: For all $m \in \{0,1\}^d$, $P(M = m \mid X) = P(M = m)$ **MAR**⁹: For all $m \in \{0,1\}^d$, $P(M = m \mid X) = P(M = m \mid X_{obs(m)})$

 ⁸Michel, Naf, Spohn, "Meinshausen. 2021. PKLM: a flexible mcar test using classification.
 ⁹What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

Visualization

The first thing to do with missing values (as for any analysis) is descriptive statistics: Visualization of patterns to get hints on how and why they occur VIM (M. Templ), naniar (N. Tierney), FactoMineR (Husson *et al.*)



Right: *PAS_m* close to *PAD_m*: Often missing on both *PAS & PAD IOT*: nested questions. Q1: yes/no, if yes Q2 - Q4, if no Q2 - Q4 "missing" Note: Crucial **before** starting any treatment of missing values and **after**

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Collaborators on inference/imputation with missing values

- W. Jiang, A. Sportisse, former PhD student at Polytechnique
- F. Husson, Professor Agronomy University (package missMDA, FactoMineR)
- G. Bogdan, Professor Wroclaw. C. Boyer, Associate Professor Sorbonne
- Traumabase project: J.P. Nadal, T. Gauss, S. Hamada

Logistic Regression with Missing Covariates – Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework. 2019. *CSDA*

Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing Values. 2020. *JCGS*.

Estimation and Imputation in Probabilistic Principal Component Analysis with Missing Not At Random data. *Neurips2020.*

Missing Data Imputation using Optimal Transport. ICML2020.

Debiasing Stochastic Gradient Descent to handle missing values. Neurips2020.

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little & Rubin (2019), Kim & Shao (2013), Carpenter & Kenward (2013), van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little & Rubin (2019), Kim & Shao (2013), Carpenter & Kenward (2013), van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$

Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little & Rubin (2019), Kim & Shao (2013), Carpenter & Kenward (2013), van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: **EM algorithm** to obtain point estimates + Supplemented EM (Meng & Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}$ + Louis to get $\hat{V}(\hat{\beta})$

Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

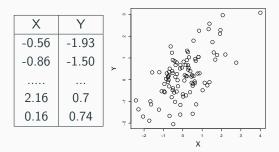
Imputation (multiple) to get a complete data set

Any analysis can be performed Ex logistic regression: Impute and apply logistic model to get $\hat{\beta}$, $\hat{V}(\hat{\beta})$

Aim: Estimate parameters & their variance from an incomplete data \Rightarrow Inferential framework

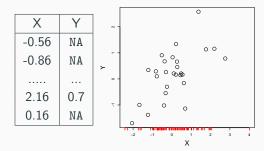
Mean imputation

•
$$(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$$



Mean imputation

- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on \boldsymbol{Y}



$$\mu_y = 0 \qquad \hat{\mu}_y = 0.18$$

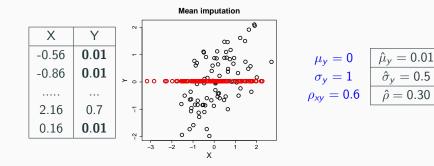
$$\sigma_y = 1 \qquad \hat{\sigma}_y = 0.9$$

$$\hat{\rho}_{xy} = 0.6 \qquad \hat{\rho}_{xy} = 0.6$$

ρ

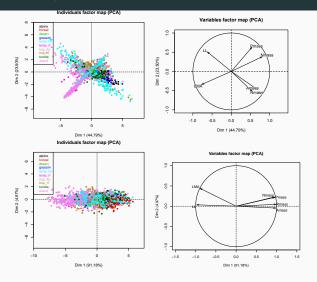
Mean imputation

- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on Y
- Estimate parameters on the mean imputed data



Mean imputation deforms joint and marginal distributions

Mean imputation is bad for estimation



PCA with mean imputation

library(FactoMineR)
PCA(ecolo)
Warning message: Missing
are imputed by the mean
of the variable:
You should use imputePCA
from missMDA

EM-PCA

library(missMDA)
imp <- imputePCA(ecolo)
PCA(imp\$comp)</pre>

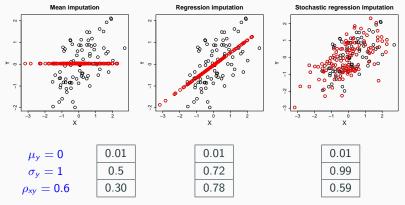
J. Husson. 2016. missMDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ¹⁰ n = 69000 species - 6 traits. Estimated correlation between Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

¹⁰Wright, I. et al. (2004). The worldwide leaf economics spectrum. *Nature*.

Imputation methods

- by regression takes into account the relationship: Estimate β impute $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \Rightarrow$ variance underestimated and correlation overestimated
- by stochastic reg: Estimate β and σ impute from the predictive $\hat{y}_i \sim \mathcal{N}\left(x_i\hat{\beta}, \hat{\sigma}^2\right) \Rightarrow$ preserve distributions



Imputation with joint model with gaussian distribution

 \Rightarrow Assumption joint gaussian model $z_i = (x_i, y_i)$, $z_i \sim \mathcal{N}(\mu, \Sigma)$

- Bivariate case with missing values on y (stochastic regression):
 - estimate β and σ
 - impute from the predictive $\hat{y}_i \sim \mathcal{N}\left(x_i \hat{eta}, \hat{\sigma}^2\right)$
- Extension to the multivariate case:
 - Estimate μ and Σ from an incomplete data with EM
 - Impute by drawing from the conditional distribution $Z_{\rm mis}|Z_{\rm obs} \sim \mathcal{N}(\mu_{\rm mis|obs}, \Sigma_{\rm mis|obs})$

$$\begin{split} \mu_{\text{mis}|\text{obs}} &= \mathbb{E}[X_{\text{mis}}] + \Sigma_{\text{mis,obs}} \Sigma_{\text{obs,obs}}^{-1} \left(X_{\text{obs}} - \mathbb{E}[X_{\text{obs}}] \right) \,. \\ \Sigma_{\text{mis}|\text{obs}} &= \Sigma_{\text{mis}} - \Sigma_{\text{mis,obs}} \Sigma_{\text{obs,obs}}^{-1} \Sigma_{\text{obs,mis}} \,. \ \text{Schur complements.} \end{split}$$

> library(norm)
> pre <- prelim.norm(as.matrix(don))
> thetahat <- em.norm(pre)
> imp <- imp.norm(pre, thetahat, don)</pre>

Assuming a joint model

- Gaussian distribution: $z_i \sim \mathcal{N}\left(\mu, \Sigma
 ight)$ (Amelia Honaker, King, Blackwell)
- low rank: $Z_{n \times d} = \mu_{n \times d} + \varepsilon \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ with μ of low rank k (softimpute Hastie & Mazuder; missMDA J. & Husson, mimi¹¹)
- latent class nonparametric Bayesian (dpmpm Reiter)
- deep learning using variational autoencoders (MIWAE, Mattei, 2018, VAEAC Ivanov et al., 2019), using GAN (GAIN, Yoon et al. 2018)

Using conditional models (joint implicitly defined)

- with logistic, multinomial, poisson regressions (mice van Buuren)
- iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data ¹², etc.

 \Rightarrow Rmistatic platform, more than 150 packages¹³

 $^{^{11}}$ J. et al. Main effects and interactions in mixed and incomplete data frames. 2018. JASA.

 $^{^{12}}$ J. et al. 2018. Imputation of mixed data with multilevel SVD. JCGS

¹³J., et al. https://cran.r-project.org/web/views/MissingData.html

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

- Expectation Maximization
- 3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

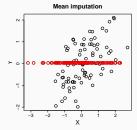
 $Categorical\ data/Mixed/Multi-Blocks/MultiLevel$

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values



$$\begin{array}{c}
\mu_y = 0 & 0.01 \\
\sigma_y = 1 & 0.5 \\
\rho = 0.6 & 0.30 \\
C I \mu_y 95\% &
\end{array}$$

Confidence interval for a mean

Let $Y = (Y_1, ..., Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- The empirical mean $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2) \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2)\right) = 1 - \alpha$$

Confidence interval for a mean

Let $Y = (Y_1, ..., Y_n)'$ be i.i.d. independent Gaussian random with expectation μ_y and variance $\sigma_y^2 > 0$.

- The empirical mean $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$
- $\bar{Y} \sim \mathcal{N}(\mu_y, \sigma_y^2/n)$
- A confidence interval for μ

$$\mathbb{P}\left(\bar{Y} - \frac{\sigma_y}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2) \le \mu \le \bar{Y} + \frac{\sigma_y}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2)\right) = 1 - \alpha$$

Variance unknown:

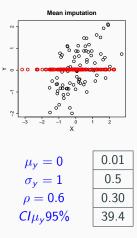
$$\frac{\sqrt{n}}{\widehat{\sigma_{y}}}\left(\bar{Y}-\mu_{y}\right)\sim T(n-1)$$

$$\left[\bar{y} - \frac{\hat{\sigma}_y}{\sqrt{n}}qt_{1-\alpha/2}(n-1) , \ \bar{y} + \frac{\hat{\sigma}_y}{\sqrt{n}}qt_{1-\alpha/2}(n-1)\right]$$

- () Generate bivariate Gaussian data ($\mu_y = 0, \sigma_y = 1, \rho = 0.6$)
- 2 Put missing values on y
- **3** Imput missing entries
- ④ Compute the confidence interval of μ_y count if the true value $\mu_y = 0$ is in the confidence interval
- **6** Repeat the steps 1-4, 10000 times
- \Rightarrow Give the coverage

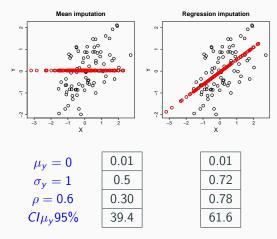
Code available on Rmistatic. Lectures.

$$\left[ar{y}-qt_{n-1}rac{\hat{\sigma}_y}{\sqrt{n}};ar{y}-qt_{n-1}rac{\hat{\sigma}_y}{\sqrt{n}}
ight]$$



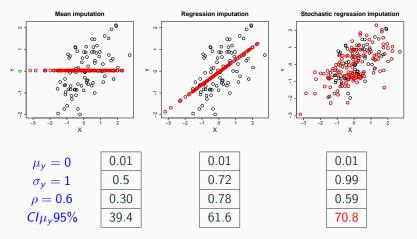
The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

$$\left[\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}};\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$$



The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

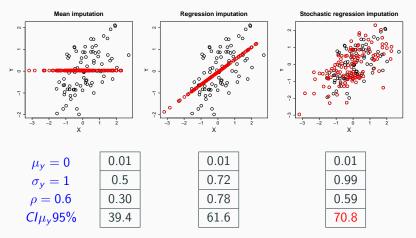
$$\left[\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}};\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$$



The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

Single imputation methods: Danger!

$$\left[\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}};\bar{y}-qt_{n-1}\frac{\hat{\sigma}_{y}}{\sqrt{n}}\right]$$



The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983) \Rightarrow Standard errors of the parameters ($\hat{\sigma}_{\hat{\mu}_{y}}$) calculated from the imputed data set are underestimated Classical confidence interval for $\mu_y \left[\bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}}; \bar{y} - qt_{n-1} \frac{\hat{\sigma}_y}{\sqrt{n}} \right]$

Asymptotic variance with MCAR values (Little & Rubin, 2019. p158):

$$\frac{\hat{\sigma}_y^2}{n_{obs}} \left(1 - \hat{\rho}^2 \frac{n - n_{obs}}{n_{obs}} \right) = \frac{\hat{\sigma}_y^2}{n} \left(1 + \frac{n - n_{obs}}{n_{obs}} (1 - \hat{\rho}^2) \right)$$

 \Rightarrow When the $\rho = 1$, we trust the prediction and the coverage given by stochastic regression is OK.

 \Rightarrow Coverage of single imputation is too low: need to take into account the uncertainty associated to the predictions.

Single imputation: Underestimation of the variability

\Rightarrow Incomplete Traumabase

X ₁	X_2	<i>X</i> ₃	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

Single imputation: Underestimation of the variability

\Rightarrow	Incomplete	Traumabase
---------------	------------	------------

\Rightarrow	Comp	leted	Traumabase
---------------	------	-------	------------

X_1	X_2	<i>X</i> ₃	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

X_1	X_2	X_3	 Y
3	20	10	 shock
-6	45	6	 shock
0	4	30	 no shock
-4	32	35	 shock
-2	75	12	 no shock
1	63	40	 shock

Single imputation: Underestimation of the variability

 \Rightarrow Incomplete Traumabase

X_1	X_2	X_3	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
-2	NA	12	 no shock
1	63	40	 shock

X_1	X_2	X_3	 Y
3	20	10	 shock
-6	45	6	 shock
0	4	30	 no shock
-4	32	35	 shock
-2	75	12	 no shock
1	63	40	 shock

A single value can't reflect the uncertainty of prediction

Multiple impute 1) Generate M plausible values for each missing value

X_1	X_2	X_3	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	75	12	no s
1	63	40	s

X_1	X_2	X_3	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_1	X_2	X_3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

library(mice); mice(traumadata)
library(missMDA); MIPCA(traumadata)

\Rightarrow Completed Traumabase

1) Generate M plausible values for each missing value

X_1	X2	X3	Y
3	20	10	S
-6	45	6	s
0	4	30	no s
-4	32	35	s
1	63	40	s
-2	15	12	no s

X1	X2	X3	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
1	63	40	s
-2	10	12	no s

X1	X ₂	X3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
1	63	40	s
-2	20	12	no s

2) Perform the analysis on each imputed data set: $\hat{\beta}_m$, $\widehat{Var}\left(\hat{\beta}_m\right)$

3) Combine the results (Rubin's rules):

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$$

$$T = \frac{1}{M} \sum_{m=1}^{M} \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_{m=1}^{M} \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

imp.mice <- mice(traumadata)
lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))</pre>

 \Rightarrow Variability of missing values taken into account

Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw \hat{y}_i from the predictive $\mathcal{N}(x_i \hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \odot Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw \hat{y}_i from the predictive $\mathcal{N}(x_i \hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \odot Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y=1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

 \Rightarrow Variability of the parameters is missing: "improper" imputation

Generating *M* imputed data sets

First idea: several stochastic regression for m = 1, ..., M, draw \hat{y}_i from the predictive $\mathcal{N}(x_i \hat{\beta}, \hat{\sigma}^2)$

- Performing the analysis on each imputed data set
- \odot Combining: variance = within + between imputation variance

	M = 1	<i>M</i> = 50
$\mu_y = 0$	0.01	0.01
$\sigma_y = 1$	0.99	0.99
ho= 0.6	0.59	0.59
${\it CI}\mu_y$ 95%	70.8	81.8

 $\Rightarrow Variability of the parameters is missing: "improper" imputation \\\Rightarrow Prediction variance = estimation variance plus noise$

Regression: variance of prediction

$$y_{n+1} = x'_{n+1}\beta + \varepsilon_{n+1}$$
$$\hat{y}_{n+1} = x'_{n+1}\hat{\beta}$$
$$\hat{\beta} = (X'X)^{-1}X'Y$$

$$V[\hat{y}_{n+1} - y_{n+1}] = V[x'_{n+1}(\hat{\beta} - \beta) - \varepsilon_{n+1}]$$

= $x'_{n+1}V(\hat{\beta} - \beta)x_{n+1} + \sigma^2]$
= $\hat{\sigma}^2 (x'_{n+1}(X'X)^{-1}x_{n+1} + 1)$

CI for the prediction

$$\left[x'_{n+1}\hat{\beta} + -t_{n-p}(1-\alpha/2)\hat{\sigma}\sqrt{(x'_{n+1}(X'X)^{-1}x_{n+1}+1)}\right]$$

 \Rightarrow Proper multiple imputation with $y_i = x_i\beta + \varepsilon_i$

① Variability of the parameters, M plausible: $(\hat{\beta})^1, ..., (\hat{\beta})^M$

 $\Rightarrow \text{Bootstrap} \\ \Rightarrow \text{Posterior distribution: Data Augmentation} \ {}_{\text{(Tanner & Wong, 1987)}}$

⊘ Noise: for m = 1, ..., M, missing values ŷ^m_i are imputed by drawing from the predictive distribution N(x_iβ̂^m, (ô²)^m)

 \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

 $\textbf{O} \ \text{Generating} \ M \ \text{imputed} \ \text{data sets: variance of prediction}$

|--|--|--|--|

- Performing the analysis on each imputed data set¹⁴, ¹⁵
- **③** Combining: variance = within + between imputation variance $\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \ T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_m - \hat{\beta} \right)^2$

 $^{^{14}}$ The analysis model may be "in agreement" with the imputation model: congeniality. 15 Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley

 \Rightarrow Aim: provide estimation of the parameters and of their variability (taken into account the variability due to missing values)

Single imputation: a single value can't reflect the uncertainty of prediction \Rightarrow underestimate the standard errors

 $\textbf{O} \ \text{Generating} \ M \ \text{imputed} \ \text{data sets: variance of prediction}$

|--|--|--|--|

"1) Variance of estimation of the parameters + 2) Noise"

- Performing the analysis on each imputed data set¹⁴, ¹⁵
- **③** Combining: variance = within + between imputation variance $\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m \ T = \frac{1}{M} \sum \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum \left(\hat{\beta}_m - \hat{\beta} \right)^2$

 $^{^{14}}$ The analysis model may be "in agreement" with the imputation model: congeniality. 15 Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley

Joint modeling

 \Rightarrow Hypothesis $z_i \sim \mathcal{N}(\mu, \Sigma)$

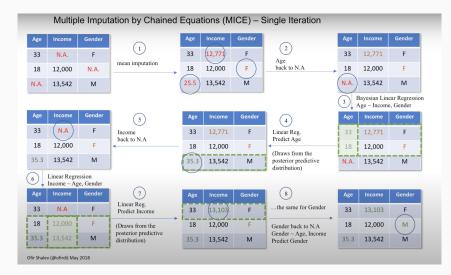
Algorithm Expectation Maximization Bootstrap:

Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell

Fully conditional modeling ¹⁶



¹⁶ van Buuren. 2018. Flexible Imputation of Missing Data. Second Edition. CRC Press

Fully conditional modeling: one model/variable

- Initial imputation: mean imputation
- Por a variable j
 - 2.1 $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})$ drawn from a Bootstrap: $(\hat{\beta}^{-j}, \hat{\sigma}^{-j})^1, ..., (\hat{\beta}^{-j}, \hat{\sigma}^{-j})^M$
 - 2.2 Imputation of the missing values in variable *j* with a model of X_j on the other X_{-j} : stochastic regression imputation from $\mathcal{N}\left((x_{i,-j})'\hat{\beta}^{-j}, \hat{\sigma}^{-j}\right)$
- Occurring through variables
- \Rightarrow Iteratively refine the imputation.
- \Rightarrow With continuous variables & regression/variable: gibbs $\mathcal{N}\left(\mu,\Sigma\right)$ 17 , 18

Implemented in mice (website) and Python*

"There is no clear-cut method for determining whether the MICE algorithm has converged"

Stef van Buuren

 \ast IterativeImputer by default does single imputation with iterative ridge regression

¹⁷ Monte Carlo statistical methods (Robert, Casella, 2004) (p344),

¹⁸ The EM algorithm and extensions (McLachlan, et al. 1998) (p243)

Single Iterative Random Forests Imputation¹⁹

- Initial imputation: mean imputation random category
 Sort the variables according to the amount of missing values
- **2** Fit a RF $X_{obs,j}$ on variables $X_{obs,-j}$ and then predict $X_{miss,j}$
- Occurring through variables
- Repeat step 2.2 and 3 until convergence
- number of trees: 100
- number of variables randomly selected at each node \sqrt{d}
- number of iterations: 4-5

Implemented in the R package missForest

¹⁹Stekhoven, Buhlmann. 2012. MissForest - non-parametric missing value imputation for mixed-type data. *Bioinformatics*

Joint versus Conditional modeling

 \Rightarrow Imputed values are both seen as draws from a Joint distribution

Conditional modeling takes the lead?

- Flexible: one model/variable. Easy to deal with interactions and variables of different nature (binary, ordinal, categorical...)
- Many statistical models are conditional models
- Tailor to your data
- Super powerful in practice

 \Rightarrow Drawbacks: one model/variable... tedious? Computational costly $_{20}$

What to do with high correlation or when n < p

- JM shrinks the covariance $\Sigma + k\mathbb{I}$ (selection of k?)
- CM: ridge regression or predictors selection/variable

 $^{^{20}}$ Improvement on mice pmm for large sample size, see mice github repo - still costly for large d 39

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

 $Categorical\ data/Mixed/Multi-Blocks/MultiLevel$

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Ignorable missing values mechanism

• The full joint data distribution of (Z, M) with density $p(z, m | \theta, \phi)$ ²¹

• The (full) observed distribution ²² :

$$p(z_{obs}, m; \theta, \phi) = \int p(z, m; \theta, \phi) dz_{mis}$$
$$= \int p(z; \theta) p(m|z; \phi) dz_{mis}$$

• With M(C)AR data:

$$p(z_{obs}, m; \theta, \phi) = \int p(z; \theta) p(m|z_{obs}; \phi) dz_{mis},$$

$$= p(m|z_{obs}; \phi) \int p(z; \theta) dz_{miss},$$

$$= p(m|z_{obs}; \phi) p(z_{obs}; \theta).$$

 \Rightarrow Likelihood inference can be based on $p(z_{obs}; \theta)$. One can ignore the missing values mechanism.

²¹We assume separability of θ and ϕ ²² $z_{obs}(m)$ is denoted z_{obs}

Expectation - Maximization (Dempster et al., 1977)

Rationale to get ML estimates: max the observed data likelihood $L_{obs}(\theta)$ through max of $L_{comp}(\theta)$. Augment the data to simplify the problem.

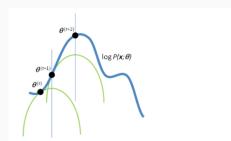
E step (conditional expectation):

$$Q(heta, heta^{\ell}) = \int log(p(z; heta)) p(z_{miss} | z_{obs}; heta^{\ell}) dz_{miss}$$

M step (maximization):

 $\theta^{\ell+1} = \operatorname{argmax}_{\theta} Q(\theta, \theta^{\ell})$

Result: when $\theta^{\ell+1} \max Q(\theta, \theta^{\ell})$ then $L_{obs}(\theta^{\ell+1}) \ge L_{obs}(\theta^{\ell})$.



Estimation of the mean and covariance matrix

Ex: Hypothesis $z_{i.} \sim \mathcal{N}(\mu, \Sigma)$

 \Rightarrow Point estimates with EM:

- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

Estimation of the mean and covariance matrix

Ex: Hypothesis $z_{i.} \sim \mathcal{N}(\mu, \Sigma)$

 \Rightarrow Point estimates with EM:

- > library(norm)
- > pre <- prelim.norm(as.matrix(don))</pre>
- > thetahat <- em.norm(pre)</pre>
- > getparam.norm(pre,thetahat)

Exercice: EM with bivariate data

 \Rightarrow Variances:

- Supplemented EM (Meng, 1991), Louis formulae
- Bootstrap approach:
 - Bootstrap rows: Z^1 , ..., Z^B
 - EM algorithm: $(\hat{\mu}^1, \hat{\Sigma}^1)$, ... , $(\hat{\mu}^B, \hat{\Sigma}^B)$

Logistic regression with missing covariates: Parameter estimation, model selection and prediction (Jiang, J., et al, CSDA, 2018)

 $x = (x_{ij})$ a $n \times d$ matrix of quantitative covariates $y = (y_i)$ an *n*-vector of binary responses $\{0, 1\}$

Logistic regression model: $\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij})}{1 + \exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij})}$ Covariables: $x_i \underset{i.i.d.}{\sim} \mathcal{N}_d(\mu, \Sigma)$ Log-likelihood with $\theta = (\mu, \Sigma, \beta)$: $\mathcal{LL}(\theta; x, y) = \sum_{i=1}^{n} \left(\log(p(y_i | x_i; \beta)) + \log(p(x_i; \mu, \Sigma)) \right).$

X_1	X_2	<i>X</i> ₃	 Y
NA	20	10	 shock
-6	45	NA	 shock
0	NA	30	 no shock
NA	32	35	 shock
1	63	40	 shock
-2	NA	12	 no shock

Logistic regression with missing covariates: Parameter estimation, model selection and prediction (Jiang, J., et al, CSDA, 2018)

 $x = (x_{ij})$ a $n \times d$ matrix of quantitative covariates $y = (y_i)$ an *n*-vector of binary responses $\{0, 1\}$

Logistic regression model: $\mathbb{P}(y_i = 1 | x_i; \beta) = \frac{\exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij})}{1 + \exp(\beta_0 + \sum_{j=1}^{d} \beta_j x_{ij})}$ Covariables: $x_i \underset{i.i.d.}{\sim} \mathcal{N}_d(\mu, \Sigma)$ Log-likelihood with $\theta = (\mu, \Sigma, \beta)$: $\mathcal{LL}(\theta; x, y) = \sum_{i=1}^{n} \left(\log(p(y_i | x_i; \beta)) + \log(p(x_i; \mu, \Sigma)) \right).$

X_1	X_2	<i>X</i> ₃	 M_1	M_2	<i>M</i> ₃	 Y
NA	20	10	 1	0	0	 shock
-6	45	NA	 0	0	1	 shock
0	NA	30	 0	1	0	 no shock
NA	32	35	 1	0	0	 shock

Stochastic Approximation EM - package misaem

 $\operatorname{argmax} \mathcal{LL}(\theta; x_{obs}, y) = \int \mathcal{LL}(\theta; x, y) dx_{mis}$

• E-step: Evaluate the quantity

$$\begin{aligned} Q(\theta, \theta^{\ell}) &= \mathbb{E}[\mathcal{LL}(\theta; x, y) | x_{\text{obs}}, y; \theta^{\ell}] \\ &= \int \mathcal{LL}(\theta; x, y) p(x_{\text{mis}} | x_{\text{obs}}, y; \theta^{\ell}) dx_{\text{mis}} \end{aligned}$$

• M-step: $\theta^{\ell+1} = \operatorname{argmax}_{\theta} Q(\theta, \theta^{\ell})$

\Rightarrow Unfeasible computation of expectation

MCEM (Wei & Tanner, 1990): Generate samples of missing data from $p(x_{\rm mis}|x_{\rm obs},y;\theta^{\ell})$ and replace the expectation by an empirical mean

\Rightarrow Require a huge number of samples

SAEM (Lavielle, 2014) almost sure convergence to MLE (Metropolis Hasting - Variance estimation with Louis formulae).

Unbiased estimates: $\hat{\beta}_1, \ldots, \hat{\beta}_d$ - $\hat{V}(\hat{\beta}_1), \ldots, \hat{V}(\hat{\beta}_d)$ - good coverage

Starting from an initial guess θ_0 , the *k*th iteration consists of three steps:

• Simulation: For $i = 1, 2, \dots, n$, draw one sample $x_{i,mis}^{(k)}$ from

$$\mathbf{p}(x_{i,\min}|x_{i,\text{obs}},y_i;\theta_{k-1}).$$

• Stochastic approximation: Update the function Q

$$Q_k(heta) = Q_{k-1}(heta) + \gamma_k \left(\mathcal{LL}(heta; x_{ ext{obs}}, x_{ ext{mis}}^{(k)}, y) - Q_{k-1}(heta)
ight),$$

where (γ_k) is a decreasing sequence of positive numbers.

• Maximization: $\theta_k = \operatorname{argmax}_{\theta} Q_k(\theta)$.

Starting from an initial guess θ_0 , the *k*th iteration consists of three steps:

• Simulation: For $i = 1, 2, \dots, n$, draw one sample $x_{i,mis}^{(k)}$ from

$$\mathbf{p}(x_{i,\min}|x_{i,\text{obs}},y_i;\theta_{k-1}).$$

• Stochastic approximation: Update the function Q

$$Q_k(heta) = Q_{k-1}(heta) + \gamma_k \left(\mathcal{LL}(heta; x_{ ext{obs}}, x_{ ext{mis}}^{(k)}, y) - Q_{k-1}(heta)
ight),$$

where (γ_k) is a decreasing sequence of positive numbers.

• Maximization: $\theta_k = \operatorname{argmax}_{\theta} Q_k(\theta)$.

Convergence: (Allassonniere et al. 2010) The choice of the sequence (γ_k) is important for ensuring the almost sure convergence of SAEM to a MLE.

Metropolis-Hastings algorithm

Target distribution

$$\begin{aligned} f_i(x_{i,\text{mis}}) &= p(x_{i,\text{mis}} | x_{i,\text{obs}}, y_i; \theta) \\ &\propto p(y_i | x_i; \beta) \, p(x_{i,\text{mis}} | x_{i,\text{obs}}; \mu, \Sigma) \end{aligned}$$

Metropolis-Hastings algorithm

Target distribution

Proposal

$$f_{i}(x_{i,\min}) = p(x_{i,\min}|x_{i,obs}, y_{i}; \theta)$$

$$\propto p(y_{i}|x_{i}; \beta) p(x_{i,\min}|x_{i,obs}; \mu, \Sigma).$$
distribution $g_{i}(x_{i,\min}) = p(x_{i,\min}|x_{i,obs}; \mu, \Sigma)$

$$x_{i,\min}|x_{i,obs} \sim \mathcal{N}_{\rho}(\mu_{i}, \Sigma_{i})$$

$$\mu_{i} = \mu_{i,\min} + \Sigma_{i,\min,obs} \Sigma_{i,obs,obs}^{-1}(x_{i,obs} - \mu_{i,obs}),$$

$$\Sigma_{i} = \Sigma_{i,\min,\min} - \Sigma_{i,\min,obs} \Sigma_{i,obs,obs}^{-1} \Sigma_{i,obs,\min},$$

Metropolis-Hastings algorithm

Target distribution

$$\begin{split} f_i(x_{i,\min}) &= p(x_{i,\min}|x_{i,obs}, y_i; \theta) \\ &\propto p(y_i|x_i; \beta) p(x_{i,\min}|x_{i,obs}; \mu, \Sigma). \end{split}$$
Proposal distribution $g_i(x_{i,\min}) &= p(x_{i,\min}|x_{i,obs}; \mu, \Sigma) \\ &\qquad x_{i,\min}|x_{i,obs} \sim \mathcal{N}_p(\mu_i, \Sigma_i) \\ &\qquad \mu_i &= \mu_{i,\min} + \Sigma_{i,\min,obs} \Sigma_{i,obs,obs}^{-1}(x_{i,obs} - \mu_{i,obs}), \\ &\qquad \Sigma_i &= \Sigma_{i,\min,\min} - \Sigma_{i,\min,obs} \Sigma_{i,obs,obs}^{-1} \Sigma_{i,obs,\min}, \end{split}$

Metropolis

•
$$z_{im}^{(k)} \sim g_i(x_{i,mis}), \ u \sim \mathcal{U}[0,1]$$

• $r = \frac{f_i(z_{im}^{(k)})/g_i(z_{im}^{(k)})}{f_i(z_{i,m-1}^{(k)})/g_i(z_{i,m-1}^{(k)})}$

• If u < r, accept $z_{im}^{(k)}$

Only need a few steps of Markov chains in each iteration of SAEM!

Variance estimation

Observed Fisher information matrix (FIM) wrt β

$$\mathcal{I}(\theta) = -rac{\partial^2 \mathcal{LL}(\theta; x_{\mathrm{obs}}, y)}{\partial \theta \partial \theta^T}.$$

Variance estimation

Observed Fisher information matrix (FIM) wrt β

$$\mathcal{I}(\theta) = -rac{\partial^2 \mathcal{LL}(heta; x_{\mathrm{obs}}, y)}{\partial heta \partial heta^{ op}}.$$

Louis formula

$$\begin{split} \mathcal{I}(\theta) &= - \mathbb{E} \left(\frac{\partial^2 \mathcal{LL}(\theta; x, y)}{\partial \theta \partial \theta^T} \big| x_{\text{obs}}, y; \theta \right) \\ &- \mathbb{E} \left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} \frac{\partial \mathcal{LL}(\theta; x, y)^T}{\partial \theta} \big| x_{\text{obs}}, y; \theta \right) \\ &+ \mathbb{E} \left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} | x_{\text{obs}}, y; \theta \right) \mathbb{E} \left(\frac{\partial \mathcal{LL}(\theta; x, y)}{\partial \theta} | x_{\text{obs}}, y; \theta \right)^T. \end{split}$$

Given the MH samples of unobserved data $(x_{i,{\rm mis}}^{(m)},1\leq i\leq n,1\leq m\leq M)$, and the SAEM estimate $\hat{ heta}$

 \Rightarrow Estimate FIM by empirical means.

With \tilde{p}_{θ} the number of estimated parameters in a given model \mathcal{M} , model selection criterion (*penalized likelihood*) :

$$\operatorname{BIC}(\mathcal{M}) = -2\mathcal{LL}(\hat{\theta}_{\mathcal{M}}; x_{\operatorname{obs}}, y) + \log(n)d(\mathcal{M}),$$

How to estimate observed likelihood ?

With \tilde{p}_{θ} the number of estimated parameters in a given model \mathcal{M} , model selection criterion (*penalized likelihood*) :

$$\operatorname{BIC}(\mathcal{M}) = -2\mathcal{LL}(\hat{ heta}_{\mathcal{M}}; x_{\operatorname{obs}}, y) + \log(n)d(\mathcal{M}),$$

How to estimate observed likelihood ?

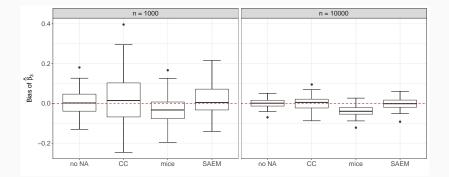
$$\begin{split} \mathbf{p}(y_i, x_{i,\text{obs}}; \theta) &= \int \mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \mathbf{p}(x_{i,\text{mis}}; \theta) dx_{i,\text{mis}} \\ &= \int \mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \frac{\mathbf{p}(x_{i,\text{mis}}; \theta)}{g_i(x_{i,\text{mis}})} g_i(x_{i,\text{mis}}) dx_{i,\text{mis}} \\ &= \mathbb{E}_{g_i} \left(\mathbf{p}(y_i, x_{i,\text{obs}} | x_{i,\text{mis}}; \theta) \frac{\mathbf{p}(x_{i,\text{mis}}; \theta)}{g_i(x_{i,\text{mis}}; \theta)} \right). \end{split}$$

Sample from g_i (the proposal distribution in SAEM)

 \Rightarrow Empirical mean.

Comparison with competitors: estimates

 $\begin{array}{l} x: \ d=5, \ n=1000 \ / \ n=10\ 000 \Rightarrow y \in \{0,1\} \\ \text{percentage of missingness} = 10\%. \\ \text{Repeat 1000 times for each setting.} \end{array}$



Comparison with competitors: coverage

Table 1: Coverage	(%)	for $n = 10000$,	calculated	over	1000	simulations.
-------------------	-----	-------------------	------------	------	------	--------------

parameter	no NA	СС	mice	SAEM
β_0	95.2	94.4	95.2	94.9
β_1	96.0	94.7	93.9	95.1
β_2	95.5	94.6	94.0	94.3
β_3	94.9	94.3	86.5	94.7
β_4	94.6	94.2	96.2	95.4
β_5	95.9	94.4	89.6	94.7

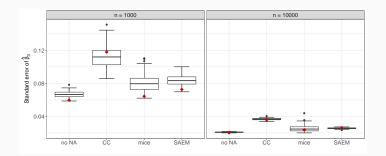


Table 2: Comparison of execution time between no NA, MCEM, mice, and SAEM with n = 1000 calculated over 1000 simulations.

Execution time (seconds)	no NA	MCEM	mice	SAEM
min	2.87×10^{-3}	492	0.64	9.96
mean	$4.65 imes10^{-3}$	773	0.70	13.50
max	43.50×10^{-3}	1077	0.76	16.79

- 6384 patients, 14 variables, percentage of NA from 0 to 60%
- Prediction of hemoragic shock
- Selection of 8 variables, interpretation of coefficients (age, low glasgow score positive effect)

```
> library(misaem)
> reg <- miss.glm(y~., data = don)
> regBIC <- miss.glm.model.select(don$y, subset(don,-c("y")))
> pr.saem <- predict(reg, newdata = dontest)</pre>
```

• Few implementation of EM strategies

"The idea of imputation is both seductive and dangerous". It is

seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the imputed data have substantial biases." (Dempster & Rubin, 1983)

- Single imputation aims at completing a dataset as best as possible
- Multiple imputation aims at estimating the parameters and their variability taking into account the uncertainty of the missing values
- Single imputation can be appropriate for point estimates
- Both % of NA & structure matter (5% of NA can be an issue)

Take home message inference/imputation

 \Rightarrow Challenges with multiple imputation

- Multiple imputation in high dimension?
- Aggregating lasso regressions
- Aggregating different models
- Theory with other asymptotic small *n*, large *p*?

 \Rightarrow Other contributions:

Bogdan, J. et al. 2020. Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing Values. *JCGS*.

Muzelec, Cuturi, Boyer, J. 2020. Missing Data Imputation using Optimal Transport. *ICML*.

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

$Categorical\ data/Mixed/Multi-Blocks/MultiLevel$

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

PCA (complete)

Find the subspace that best represents the data

Figure 2: Camel or dromedary?

- \Rightarrow Best approximation when projecting the data
- \Rightarrow Best representation of the variability
- \Rightarrow Do not distort the distances between observations

PCA (complete)

Find the subspace that best represents the data

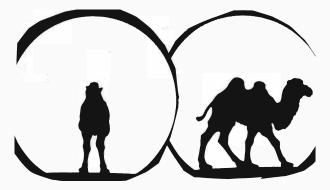
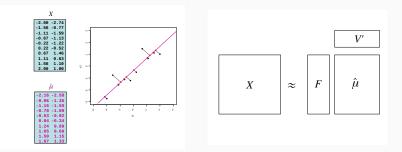


Figure 2: Camel or dromedary? source J.P. Fénelon

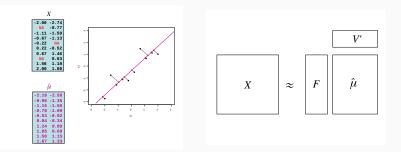
- \Rightarrow Best approximation when projecting the data
- \Rightarrow Best representation of the variability
- \Rightarrow Do not distort the distances between observations

PCA reconstruction



 $\label{eq:sphere:sph$

PCA reconstruction



 $\label{eq:second} \begin{array}{l} \Rightarrow \mbox{ Minimizes distance between observations and their projection} \\ \Rightarrow \mbox{ Approx } X_{n \times p} \mbox{ with a low rank matrix } S$

SVD X:
$$\hat{\mu}^{PCA} = U_{n \times S} \Lambda_{S \times S}^{\frac{1}{2}} V'_{p \times S}$$
 $F = U \Lambda^{\frac{1}{2}}$ PC - scores
= $F_{n \times S} V'_{p \times S}$ V principal axes - loadings

Missing values in PCA

 \Rightarrow PCA: least squares

$$\operatorname{argmin}_{\mu}\left\{\left\|X_{n \times p} - \mu_{n \times p}\right\|_{2}^{2} : \operatorname{rank}(\mu) \leq S\right\}$$

 \Rightarrow PCA with missing values: weighted least squares

$$\operatorname{argmin}_{\mu}\left\{\left\| \textit{W}_{\textit{n} imes \textit{p}} \odot (\textit{X} - \mu)
ight\|_{2}^{2} : \operatorname{rank}\left(\mu
ight) \leq \textit{S}
ight\}$$

with $W_{ij} = 0$ if X_{ij} is missing, $W_{ij} = 1$ otherwise; \odot elementwise multiplication

Many algorithms: weighted alternating least squares (Gabriel & Zamir, 1979)²³; iterative PCA (Kiers, 1997)²⁴.

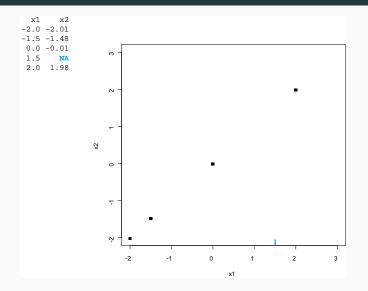
See also Jan de Leeuw historical notes and NIPALS for 1 dim ²⁵, ²⁶.

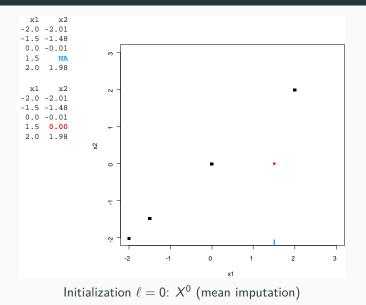
²⁴Kiers, 1997. Weighted Least Squares Fitting Using Iterative OLS Algorithms. Psychometrika.

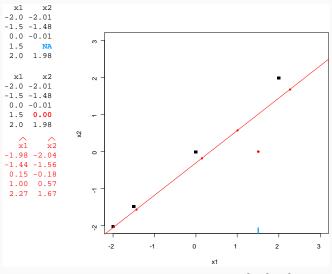
 25 Christofferson. 1969. The one-component model with incomplete data. PhD thesis, Uppsala University, Institute of statistics.

 26 Wold and Lyttkens. 1969. Nonlinear iterative partial least squares (nipals) estimation procedures. Bulletin. Int. Stat.

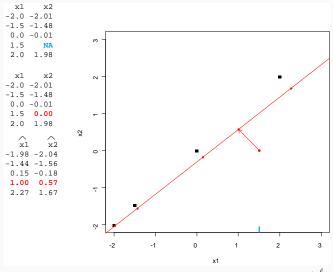
 $^{^{23}\}mbox{Gabriel, Zamir. 1979.}$ Lower Rank Approximation of Matrices by Least Squares with Any Choize of Weights. Technometrics.



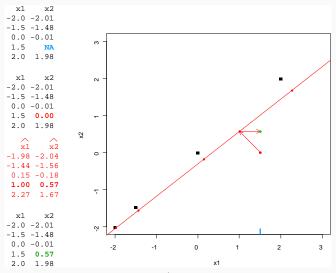




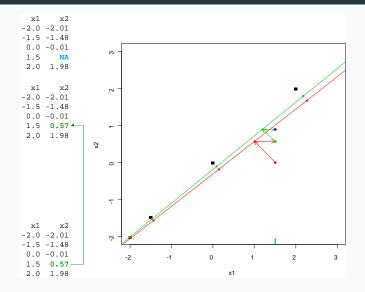
PCA on the completed data set $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell})$;

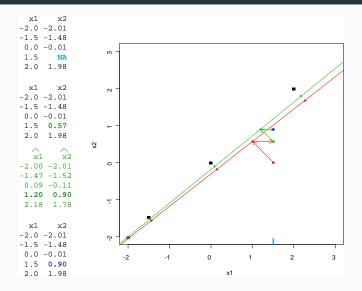


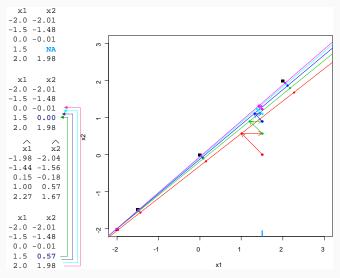
Missing values imputed with the fitted matrix $\hat{\mu}^\ell = U^\ell \Lambda^{1/2^\ell} V^{\ell\prime}$



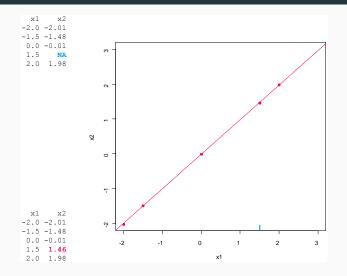
The new imputed dataset is $\hat{X}^\ell = \mathcal{W} \odot X + (\mathbf{1} - \mathcal{W}) \odot \hat{\mu}^\ell$







Steps are repeated until convergence



PCA on the completed data set $\rightarrow (U^{\ell}, \Lambda^{\ell}, V^{\ell})$ Missing values imputed with the fitted matrix $\hat{\mu}^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell \prime}$

Iterative PCA/SVD algorithm

• initialization $\ell = 0$: X^0 (mean imputation)

2 step ℓ:

- (a) PCA on the completed data ightarrow ($U^\ell, \Lambda^\ell, V^\ell$); S dim kept
- (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W \odot X + (\mathbf{1} - W) \odot (\hat{\mu}^{S})^{\ell}$

3 steps of estimation and imputation are repeated ²⁷

approximations. CSDA.

 $^{^{27}}$ In practice the means and variances are updated at each step to (re)center & (re)scale the data. 28 J. & Husson, 2012. Selecting the number of components in PCA using cross-validation

Iterative PCA/SVD algorithm

• initialization $\ell = 0$: X^0 (mean imputation)

2 step ℓ:

- (a) PCA on the completed data ightarrow $(U^\ell, \Lambda^\ell, V^\ell)$; S dim kept
- (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W \odot X + (\mathbf{1} - W) \odot (\hat{\mu}^{S})^{\ell}$

③ steps of estimation and imputation are repeated ²⁷

 $\Rightarrow \hat{\mu} \text{ from incomplete data: EM algo } X = \mu + \varepsilon, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N} \left(0, \ \sigma^2 \right)$ with μ of low rank , $x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$

 \Rightarrow Completed data: good imputation (matrix completion, Netflix)

 $^{^{27}}$ In practice the means and variances are updated at each step to (re)center & (re)scale the data. 28 J. & Husson, 2012. Selecting the number of components in PCA using cross-validation approximations. *CSDA*.

Iterative PCA/SVD algorithm

• initialization $\ell = 0$: X^0 (mean imputation)

2 step ℓ:

- (a) PCA on the completed data \rightarrow ($U^{\ell}, \Lambda^{\ell}, V^{\ell}$); S dim kept
- (b) missing values are imputed with $(\hat{\mu}^{S})^{\ell} = U^{\ell} \Lambda^{1/2^{\ell}} V^{\ell'}$ the new imputed data is $\hat{X}^{\ell} = W \odot X + (\mathbf{1} - W) \odot (\hat{\mu}^{S})^{\ell}$

③ steps of estimation and imputation are repeated ²⁷

 $\Rightarrow \hat{\mu} \text{ from incomplete data: EM algo } X = \mu + \varepsilon, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N} \left(0, \ \sigma^2 \right)$ with μ of low rank , $x_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$

⇒ Completed data: good imputation (matrix completion, Netflix)

Reduction of variability (imputation by $U\Lambda^{1/2}V'$)

Selecting S (solution are not nested)? Generalized cross-validation 28

 $^{^{27}}$ In practice the means and variances are updated at each step to (re)center & (re)scale the data. 28 J. & Husson, 2012. Selecting the number of components in PCA using cross-validation approximations. *CSDA*.

Overfitting

Overfitting when:

- many parameters (U_{n×S}, V_{S×p})/ the number of observed values: S large, many NA
- data are very noisy
- \Rightarrow "Trust too much the relationship between variables"

Remarks:

- missing values: special case of small data set
- iterative PCA: prediction method

Solution:

 $\Rightarrow \mathsf{Regularization}$

Soft thresholding iterative SVD

 \Rightarrow Init - estimation - imputation steps:

The imputation step

$$\hat{u}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{S} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by $^{\rm 29}$

$$\hat{\mu}_{ij}^{\mathsf{Soft}} = \sum_{s=1}^{p} \left(\sqrt{\lambda_s} - \lambda \right)_{+} u_{is} v_{js}$$
$$X = \mu + \varepsilon \qquad \operatorname{argmin}_{\mu} \left\{ \| W \odot (X - \mu) \|_{2}^{2} + \lambda \| \mu \|_{\star} \right\},$$

with $\|\mu\|_{\star}$, the nuclear norm, *i.e.* the sum of its singular values.

Implemented in softImpute

²⁹T. Hastie, R. Mazumber, 2015, Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares. JMLR.

Regularized iterative PCA

The imputation step

$$\hat{\mu}_{ij}^{\mathsf{PCA}} = \sum_{s=1}^{5} \sqrt{\lambda_s} u_{is} v_{js}$$

is replaced by $^{\rm 30}, ^{\rm 31}, \, ^{\rm 32}$:

$$\hat{\mu}_{ij}^{\mathsf{rPCA}} = \sum_{s=1}^{S} \left(\frac{\lambda_s - \hat{\sigma}^2}{\lambda_s} \right) \sqrt{\lambda_s} u_{is} v_{js} = \sum_{s=1}^{S} \left(\sqrt{\lambda_s} - \frac{\hat{\sigma}^2}{\sqrt{\lambda_s}} \right) u_{is} v_{js}$$

 $\sigma^2 \; {\rm small} \to {\rm regularized} \; {\rm iterative} \; {\rm PCA} \approx {\rm iterative} \; {\rm PCA} \\ \sigma^2 \; {\rm large} \to {\rm mean} \; {\rm imputation}$

$$\hat{\sigma}^2 = \frac{RSS}{df} = \frac{n \sum_{s=S+1}^{p} \lambda_s}{np - p - nS - pS + S^2 + S} \qquad (X_{n \times p}; U_{n \times S}; V_{p \times S})$$

Implemented in **missMDA** (Youtube link)

 ³⁰J., Husson. 2012. Handling missing values in exploratory multivariate data analysis. *JSFDS*.
 ³¹Verbank, J., Husson. 2013. Regularised PCA to denoise and visualise data *Stat & Computing*.
 ³²Rationale: L2+L0 penalty, empirical bayes Efron Moris, 1979, PPCA

Properties

 \Rightarrow Powerful methods for matrix completion used in recommandation systems (ex Netflix prize: 99% missing)

 \Rightarrow Very good quality of imputation. Using similarities between observations and relationship between variables + reduction of dim

Model makes sense ³³: Data = structure of rank S + noise

 \Rightarrow Different noise regime 34 , 35

- low noise: iterative PCA (tuning S: CV GCV)
- moderate: iterative regularized PCA (tuning S: CV GCV, σ)
- high noise (SNR low, S large): soft thresholding (tuning λ : CV, σ) Implemented in denoiseR ³⁶

Imputed data should be analysed with caution by other methods

 $^{^{33}\}text{Udell}$ & Townsend. 2019. Why Are Big Data Matrices Approximately Low Rank? SIAM.

³⁴J. & Sardy. 2015. Adaptive Shrinkage of singular values. *Stat & Computing.*

 $^{^{35}}$ J. & Wager. 2016. Stable Autoencoding: A Flexible Framework for Regularized Low-Rank Matrix Estimation. *JMLR*.

³⁶J. Wager, Sardy. 2016: denoiseR: A Package for Low Rank Matrix Estimation.

Random Forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Random forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5	Feat	:1 Fe	at2 Feat3	Feat4	Feat5	Feat1	Feat2	Feat3	Feat4	Feat5
C1	1	1	1	1	1	1	1.0	1.00	1	1	1	1	1	1	1
C2	1	1	1	1	1	1	1.0	1.00	1	1	1	1	1	1	1
C3	2	2	2	2	2	2	2.0	2.00	2	2	2	2	2	2	2
C4	2	2	2	2	2	2	2.0	2.00	2	2	2	2	2	2	2
C5	3	3	3	3	3	3	3.0	3.00	3	3	3	3	3	3	3
C6	3	3	3	3	3	3	3.0	3.00	3	3	3	3	3	3	3
C7	4	4	4	4	4	4	4.0	4.00	4	4	4	4	4	4	4
C8	4	4	4	4	4	4	4.0	4.00	4	4	4	4	4	4	4
C9	5	5	5	5	5	5	5.0	5.00	5	5	5	5	5	5	5
C10	5	5	5	5	5	5	5.0	5.00	5	5	5	5	5	5	5
C11	6	6	6	6	6	6	6.0	6.00	6	6	6	6	6	6	6
C12	6	6	6	6	6	6	6.0	6.00	6	6	6	6	6	6	6
C13	7	7	7	7	7	7	7.0	7.00	7	7	7	7	7	7	7
C14	7	7	7	7	7	7	7.0	7.00	7	7	7	7	7	7	7
Igor	8	NA	NA	8	8	8	6.87	6.87	8	8	8	8	8	8	8
Frank	8	NA	NA	8	8	8	6.87	6.87	8	8	8	8	8	8	8
Bertrand	9	NA	NA	9	9	9	6.87	6.87	9	9	9	9	9	9	9
Alex	9	NA	NA	9	9	9	6.87	6.87	9	9	9	9	9	9	9
Yohann	10	NA	NA	10	10	10	6.87	6.87	10	10	10	10	10	10	10
Jean	10	NA	NA	10	10	10	6.87	6.87	10	10	10	10	10	10	10

Missing

missForest

imputePCA

 \Rightarrow Imputation inherits from the method: RF (computationaly costly) good for non linear relationships / PCA good for linear relationships

Multiple imputation with Bootstrap PCA ³⁸

$$x_{ij} = \mu_{ij} + \varepsilon_{ij} = \sum_{s=1}^{S} \sqrt{\tilde{\lambda}_s} \tilde{u}_{is} \tilde{v}_{js} + \varepsilon_{ij}$$
, $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

● Variability of the parameters, *M* plausible: (µ̂_{ij})¹, ..., (µ̂_{ij})^{M 37}
 ● Noise: for m = 1, ..., M, missing values x^m_{ij} drawn N(µ̂^m_{ij}, ô²)

Implemented in missMDA (website)

François Husson

 $^{^{37}\}mathrm{A}$ parametric bootstrap is used where the noise is resampled. A non parametric bootstrap implies that there are not the same observations for each imputed data set. A trick consists in using extremelly small weights and not zero weights.

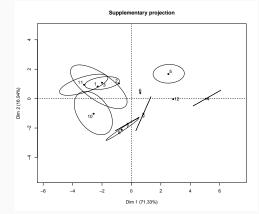
³⁸J. Pages. Husson. 2011. Multiple imputation in principal component analysis. ADAC.

Visualization of the imputed values

X1	X2	X3	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	15	12	no s
1	63	40	s

X_1	X2	X3	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

<i>x</i> ₁	X2	X3	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s



library(missMDA)
MIPCA(traumadata)

Percentage of NA?

 \Rightarrow Good estimates of the parameters and their variance from an incomplete data (coverage close to 0.95) The variability due to missing values is well taken into account

Amelia & mice can have difficulties with strong correlations or n < p missMDA does not but requires a tuning parameter: number of dim.

Amelia & missMDA are based on linear relationships mice is more flexible (one model per variable)

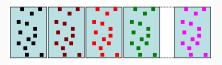
MI based on PCA works in a large range of configuration, n < p, n > p strong or weak relationships, low or high percentage of missing values

Simulations

The simulated data $\mathcal{N}\left(\mu,\Sigma\right)$

- vary number of obs. *n*, variables *p*, correlation ρ
- vary %NA, missing values mechanism (MCAR, MAR)

 \Rightarrow Multiple imputation M = 100 imputed tables with PCA, Joint Model, Conditional Model



 \Rightarrow Analysis model: estimate $\theta_1 = \mathbb{E}[Y], \theta_2 = \beta_1$ (regression coefficient)

 $\Rightarrow \text{ Combine with Rubin's rule: } \hat{\theta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_m$ $T = \frac{1}{M} \sum_m \widehat{Var} \left(\hat{\theta}_m \right) + \frac{1}{M-1} \sum_m \left(\hat{\theta}_m - \hat{\theta} \right)^2$

Assess Bias, CI width & coverage - 1000 simulations

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values

Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

	maxO3	T9	T12	T15	Ne9	Ne12	Ne15	V×9	V×12	V×15	maxO3v
0601	87	15.6	18.5	18.4	4	4	8	NA	-1.7101	-0.6946	84
0602	82	NA	18.4	17.7	5	5	7	NA	NA	NA	87
0603	92	NA	17.6	19.5	2	5	4	2.9544	1.8794	0.5209	82
0604	114	16.2	NA	NA	1	1	0	NA	NA	NA	92
0605	94	17.4	20.5	NA	8	8	7	-0.5	NA	-4.3301	114
0606	80	17.7	NA	18.3	NA	NA	NA	-5.6382	-5	-6	94
0607	NA	16.8	15.6	14.9	7	8	8	-4.3301	-1.8794	-3.7588	80
0610	79	14.9	17.5	18.9	5	5	4	0	-1.0419	-1.3892	NA
0611	101	NA	19.6	21.4	2	4	4	-0.766	NA	-2.2981	79
0612	NA	18.3	21.9	22.9	5	6	8	1.2856	-2.2981	-3.9392	101
0613	101	17.3	19.3	20.2	NA	NA	NA	-1.5	-1.5	-0.8682	NA
:					÷		:	:	:		
									-		
0919	NA	14.8	16.3	15.9	7	7	7	-4.3301	-6.0622	-5.1962	42
0920	71	15.5	18	17.4	7	7	6	-3.9392	-3.0642	0	NA
0921	96	NA	NA	NA	3	3	3	NA	NA	NA	71
0922	98	NA	NA	NA	2	2	2	4	5	4.3301	96
0923	92	14.7	17.6	18.2	1	4	6	5.1962	5.1423	3.5	98
0924	NA	13.3	17.7	17.7	NA	NA	NA	-0.9397	-0.766	-0.5	92
0925	84	13.3	17.7	17.8	3	5	6	0	-1	-1.2856	NA
0927	NA	16.2	20.8	22.1	6	5	5	-0.6946	-2	-1.3681	71
0928	99	16.9	23	22.6	NA	4	7	1.5	0.8682	0.8682	NA
0929	NA	16.9	19.8	22.1	6	5	3	-4	-3.7588	-4	99
0930	70	15.7	18.6	20.7	NA	NA	NA	0	-1.0419	-4	NA

Complete ozone

max03 Τ9 T12 T15 Ne9 Ne12 Ne15 Vx15 maxO3v Vx9 Vx12 20010601 87,000 15,600 18,500 20,471 4,000 4,000 8,000 0,695 -1,710 -0,695 84,000 20010602 82.000 18.505 20.870 21.799 5.000 5.000 7.000 -4.330 -4.000 -3.000 87.000 20010603 92.000 15.300 17.600 19.500 2.000 3.984 3.812 2.954 1.951 0.521 82.000 20010604 114,000 16,200 19,700 24,693 1,000 1,000 0,000 2,044 0,347 -0,174 92,000 20010605 94,000 18,968 20,500 20,400 5,294 5,272 5,056 -0,500 -2,954 -4,330 114,000 20010606 80,000 17,700 19,800 18,300 6,000 7,020 7,000 -5,638 -5,000 -6,000 94,000 20010607 79.000 16.800 15.600 14.900 7.000 8.000 6.556 -4.330 -1.879 -3.759 80.000 20010610 79.000 14.900 17.500 18.900 5.000 5.000 5.016 0.000 -1.042 -1.389 99.000 20010611 101.000 16.100 19.600 21.400 2.000 4.691 4.000 -0.766 -1.026 -2.298 79.000 20010612 106,000 18,300 22,494 22,900 5,000 4,627 4,495 1,286 -2,298 -3,939 101,000 20010613 101.000 17.300 19.300 20.200 7.000 7.000 3.000 -1.500 -1.500 -0.868 106.000

 20010915
 69.000
 17.100
 17.500
 17.500
 5.000
 7.100
 2.736
 -1.42
 71.000

 20010916
 61.000
 15.400
 18.091
 16.600
 4.000
 5.000
 -3.830
 0.000
 1.389
 69.000

 20010917
 60.000
 15.283
 18.565
 19.554
 4.000
 5.000
 4.000
 0.000
 3.214
 0.000
 71.000

 20010917
 60.000
 14.281
 18.565
 19.554
 4.000
 7.000
 -3.214
 -2.500
 60.000

 20010921
 65.000
 14.091
 14.300
 7.000
 7.000
 -3.214
 -5.500
 60.000

 20010921
 71.000
 15.550
 18.000
 7.000
 7.000
 -3.939
 -3.064
 0.000
 65.000

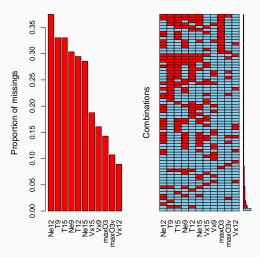
 20010927
 76.001
 13.300
 17.700
 17.200
 5.633
 5.485
 5.177
 -0.666
 -0.500
 65.139

 20010927
 75.573
 13.300
 18.049
 5.385
 5.495
 5.17

> library(missMDA)

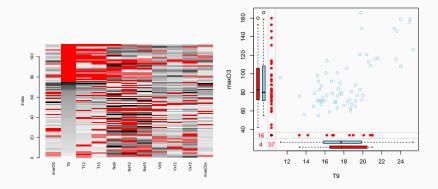
- > res.comp <- imputePCA(ozo[, 1:11])</pre>
- > res.comp\$comp

Pattern visualization



- > library(VIM)
- > aggr(don, sortVar = TRUE)

Visualization



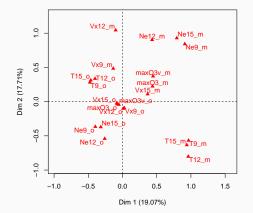
- > library(VIM)
- > matrixplot(don, sortby = 2)
- > marginplot(don[,c("T9", "max03")])

 \Rightarrow Create the missingness matrix

```
> mis.ind <- matrix("o", nrow = nrow(don), ncol = ncol(don))
> mis.ind[is.na(don)] = "m"
> dimnames(mis.ind) = dimnames(don)
> mis.ind
```

	max03	T9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	max03v
20010601	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"	"o"	"o"	"o"
20010602	"o"	"m"	"m"	"m"	"o"	"o"	"o"	"o"	"o"	"o"	"o"
20010603	"o"	"o"	"o"	"o"	"o"	"m"	"m"	"o"	"m"	"o"	"o"
20010604	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"m"	"o"	"o"	"o"
20010605	"o"	"m"	"o"	"o"	"m"	"m"	"m"	"o"	"o"	"o"	"o"
20010606	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"	"o"
20010607	"o"	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"
20010610	"o"	"o"	"o"	"o"	"o"	"o"	"m"	"o"	"o"	"o"	"o"

Visualization with Multiple Correspondence Analysis



MCA graph of the categories

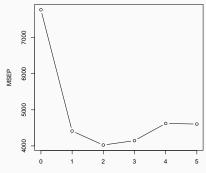
- > library(FactoMineR)
- > resMCA <- MCA(mis.ind)</pre>
- > plot(resMCA, invis = "ind", title = "MCA graph of the categories")

Imputation with PCA in practice

 \Rightarrow Step 1: Estimation of the number of dimensions

```
> library(missMDA)
```

- > nb <- estim_ncpPCA(don, method.cv = "Kfold")</pre>
- > nb\$ncp #2
- > plot(0:5, nb\$criterion, xlab = "nb dim", ylab ="MSEP")



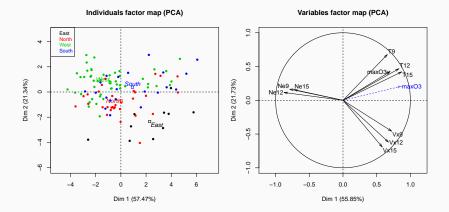
nb dim

Imputation with PCA in practice

 \Rightarrow Step 2: Imputation of the missing values

> rea	s.comp	<- im]	putePCI	A(don,	ncp	= 2)					
> rea	s.comp	\$compl	eteObs	[1:3,]							
	max03	Т9	T12	T15	Ne9	Ne12	Ne15	Vx9	Vx12	Vx15	max03v
0601	87	15.60	18.50	20.47	4	4.00	8.00	0.69	-1.71	-0.69	84
0602	82	18.51	20.88	21.81	5	5.00	7.00	-4.33	-4.00	-3.00	87
0603	92	15.30	17.60	19.50	2	3.98	3.81	2.95	1.97	0.52	82

Cherry on the cake: PCA on incomplete data!



- > imp <- cbind.data.frame(res.comp\$completeObs, ozo[, 12])</pre>
- > res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)</pre>
- > plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")
- > res.pca\$ind\$coord #scores (principal components)

```
> library(softImpute)
> fit1 <- softImpute(XNA, rank = , lambda = )
> X.soft <- complete(XNA, fit1)
> library(denoiseR)
```

- > adaNA <- imputeada(XNA, gamma = 1) ## time consuming...</pre>
- > X.ada <- adaNA\$completeObs</pre>

```
\Rightarrow Step 1: Generate M imputed data sets
```

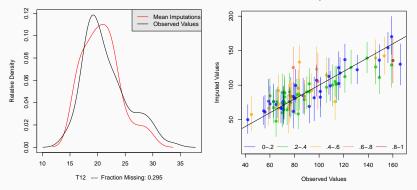
```
> library(Amelia)
```

> res.amelia <- amelia(don, m = 100)</pre>

```
> library(mice)
> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")</pre>
```

> library(missMDA)
> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)
> res.MIPCA\$res.MI

\Rightarrow Step 2: visualization



Observed and Imputed values of T12

Observed versus Imputed Values of maxO3

```
> library(Amelia)
```

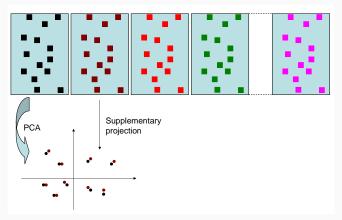
```
> res.amelia <- amelia(don, m = 100)</pre>
```

> compare.density(res.amelia, var = "T12")

```
> overimpute(res.amelia, var = "maxO3")
```

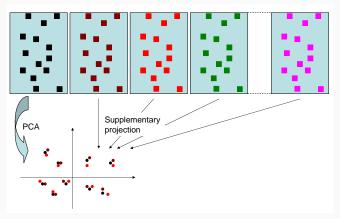
```
> library(missMDA)
res.over <- Overimpute(res.MIPCA)</pre>
```

- \Rightarrow Step 2: visualization
- \Rightarrow Individuals position (and variables) with other predictions



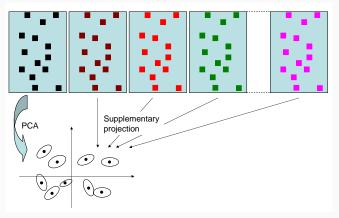
 $\begin{array}{l} \mbox{Regularized iterative PCA} \\ \Rightarrow \mbox{reference configuration} \end{array}$

- \Rightarrow Step 2: visualization
- \Rightarrow Individuals position (and variables) with other predictions



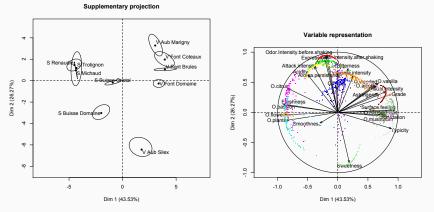
 $\begin{array}{l} \mbox{Regularized iterative PCA} \\ \Rightarrow \mbox{reference configuration} \end{array}$

- \Rightarrow Step 2: visualization
- \Rightarrow Individuals position (and variables) with other predictions



Regularized iterative PCA \Rightarrow reference configuration

- \Rightarrow Step 2: visualization
- > res.MIPCA <- MIPCA(don, ncp = 2)</pre>
- > plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")



 \Rightarrow Step 3. Regression on each table and pool the results

$$\hat{\beta} = \frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_m$$
$$T = \frac{1}{M} \sum_m \widehat{Var} \left(\hat{\beta}_m \right) + \left(1 + \frac{1}{M} \right) \frac{1}{M-1} \sum_m \left(\hat{\beta}_m - \hat{\beta} \right)^2$$

> library(mice)
> res.mice <- mice(don, m = 100)
> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")
> lm.mice.out <- with(res.mice, lm(max03 ~ T9+T12+T15+Ne9+...+Vx15+max03v))
> pool.mice <- pool(lm.mice.out)
> summary(pool.mice)

	est	se	t	df	Pr(> t)	lo 95	hi 95	nmis	fmi	lambda
(Intercept)	19.31	16.30	1.18	50.48	0.24	-13.43	52.05	NA	0.46	0.44
Т9	-0.88	2.25	-0.39	26.43	0.70	-5.50	3.75	37	0.71	0.69
T12	3.29	2.38	1.38	27.54	0.18	-1.59	8.18	33	0.70	0.68
Vx15	0.23	1.33	0.17	39.00	0.87	-2.47	2.93	21	0.57	0.55
max03v	0.36	0.10	3.65	46.03	0.00	0.16	0.56	12	0.50	0.48

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

MNAR data

We should consider (Z, M) (not-ignorable mechanism).

The main MNAR specifications

• selection model (Heckman, 1979):

$$p_{Z,M}(z,m;\theta,\phi) = p_Z(z;\theta)p_{M|Z}(m|z;\phi)$$

• pattern-mixture model (Little, 1993):

$$p_{Z,M}(z,m;\xi,\varphi) = p_M(m;\xi)p_{Z|M}(z|m;\varphi)$$

Q: How to choose the MNAR specification?

- Estimate the parameters of the data distribution: selection models.
- Distribution is not the same for the observed data and the missing data: pattern-mixture models.

See PhD thesis of Aude Sportisse.

We should prove the identifiability of the parameters.

Identifiability issue in the MNAR case Credit: Ilya Shpitser $X^{NA} = [1, NA, 0, 1, NA, 0].$

• Case 1: X missing only if X = 1.

$$X = [1, 1, 0, 1, 1, 0], \mathbb{P}(X = 1) = 2/3.$$

• Case 2: X missing only if X = 0.

$$X = [1, 0, 0, 1, 0, 0], \mathbb{P}(X = 1) = 1/3.$$

 \Rightarrow We start from 2 equal observed distribution. It leads to different parameters of the data distribution $\mathbb{P}(X = 1)$.

Identifiability: the parameters of (X, M) are uniquely determined from available information (X, M = 0).

Specific methods should be used.

Existing methods for MNAR data

- Model the joint distribution $(Z, M)^{39}$: Costly, only few missing variables, specific missing-data mechanism.
- Semi-parametric models: model either Z or $M|Z|^{40}$: For regression model when Y is missing and not X.
- Available-case analysis without modeling the missing-data mechanism ⁴¹: For linear regression.

	1	12	28	NA		1	12	28	M
		23	NA	89		(23	MA	89
$X^{\rm NA} =$		32	6	24	$, X^{AC} =$		32	6	24
		:	:	:	<i>,</i>		:	:	:
		NA	3	7)			MA	3	7
	1		Ŭ	• /		1		•	• /

 $^{39}{\rm lbrahim,}$ et al. 1999. Missing covariates in glm when the missing data mechanism is non-ignorable. JRSSB.

⁴⁰Tang, Ju. 2018. Statistical inference for nonignorable missing-data problems: a selective review. Statistical Theory and Related Fields.

⁴¹Mohan, Thoemmes, Pearl. 2018. Estimation with incomplete data: The linear case. *IJCAI*.

Low rank estimation with MNAR data

 $X \in \mathbb{R}^{n \times p}$ noisy realisation of a low-rank matrix $\mu \in \mathbb{R}^{n \times p}$:

$$X = \mu + \epsilon, \text{where} \begin{cases} \mu \text{ with rank } S < \min\{n, p\}, \\ \epsilon_i \stackrel{\mathbb{L}}{\sim} \mathcal{N}(0_n, \sigma^2 I_{n \times n}), \forall i \in [1, n]. \end{cases}$$

--- Access only to the missing-data matrix $Y \odot M$,

- How to estimate μ ?
- How to impute the unknown entries of X ?

Data distribution

$$p(x_{ij}; \mu_{ij}) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2}\left(\frac{x_{ij} - \mu_{ij}}{\sigma}\right)^2\right)$$

MNAR missing-data mechanism via a Logistic Model $\forall i \in [1, n], \phi_i = (\phi_{1i}, \phi_{2i})$ denoting a parameter vector:

$$p(M_{ij}|\mathbf{x}_{ij};\phi) = [(1 + e^{-\phi_{1j}(\mathbf{x}_{ij} - \phi_{2j})})^{-1}]^{(1 - M_{ij})}[1 - (1 + e^{-\phi_{1j}(\mathbf{x}_{ij} - \phi_{2j})})^{-1}]^{M_{ij}}$$

→ self-masked MNAR : the lack only depends on the value itself.

Method 1: EM algo with MNAR (self-mask logistic)⁴²

MAR (ignorable): maximize the observed penalized log-likelihood

$$\hat{\mu} \in \operatorname{argmin}_{\mu} \| (X - \mu) \odot M \|_2^2 + \lambda \| \mu \|_{\star},$$

Algo: iterative soft-thresholding SVD (ISTA), accelerated version: FISTA

MNAR (non ignorable) $L(\mu, \phi; x_{obs}, m) = \int p(x; \mu) p(m|x; \phi) dx_{mis}$.

• E-step:

 $Q(\mu,\phi|\hat{\mu}^{(/ell)},\hat{\phi}^{(\ell)}) = -\mathbb{E}_{X_{\text{mis}}}\left[\ell(\mu,\phi;x,\mu)|X_{\text{obs}},M;\mu=\hat{\mu}^{(\ell)},\phi=\hat{\phi}^{(t)}\right]$

• M-step:

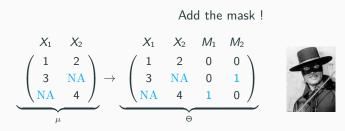
$$\hat{\mu}^{(\ell+1)}, \hat{\phi}^{(\ell+1)} \in \operatorname{argmin}_{\mu,\phi} Q(\mu, \phi | \hat{\mu}^{(t)}, \hat{\phi}^{(\ell)}) + \lambda \|\mu\|_{\star}$$

- E-step: Monte-Carlo approximation and SIR algorithm.
- M-step: Separability of Q:
 - μ : softImpute, FISTA.
 - ϕ : Newton-Raphson algorithm.

 \Rightarrow Computationally costly, few variables with MNAR.

⁴²Sportisse, Boyer, J. 2018. Low-rank estimation with missing non at random data. *Statistics & Computing*.

Method 2: implicitly modelling the mechanism



Solve the classical MAR optimization problem

 $\hat{\Theta} \in \operatorname{argmin}_{\Theta} \frac{1}{2} \| \left[(1 - M) \odot X | M \right] - [M|1] \odot \Theta \|_2^2 + \lambda \| \Theta \|_{\star},$

- softImpute, FISTA.
- taking into account the mask binary type, with a Penalized Iteratively Reweighted Least Squares algorithm ⁴³.

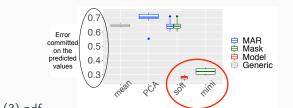
Computationally efficient but no theoretical guaranties.

⁴³Robin, Klopp, J, Moulines Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. *JASA*.

Results on real data

- \simeq 3200 patients with brain trauma injury, 9 quantitative variables containing missing values are selected by doctors.
- Numerical comparison:
 - Methods which consider MAR data (in blue): the regularized iterative PCA and the matrix completion softImpute algorithms.
 - Method 1 by considering MNAR data (in red) with softImpute for the M-step.
 - Method 2 by adding the mask (in green) with the matrix completion softImpute algorithm and mimi which takes into account the binary type of the mask.

Imputation performances



96

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

$Categorical\ data/Mixed/Multi-Blocks/MultiLevel$

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Questionnaire data from health institute http://www.inpes.sante.fr

region	Sex	age	year	edu	drunk	alcohol	glasses
Ile de France	:8120 F:29776	18_25: 6920	2005:27907	E1:12684	0 :44237	<1/m :12889	0 : 2812
Rhone Alpes	:5421 M:23165	26_34: 9401	2010:25034	E2:23521	1-2 : 4952	0 : 6133	0-2:37867
Provence Alpes	:4116	35_44:10899		E3:6563	10-19: 839	1-2/m: 7583	10+: 590
Nord Pas de Calais	:3819	45_54: 9505		E4:10100	20-29: 212	1-2/w: 9526	3-4: 9401
Pays de Loire	:3152	55_64: 9503		NA:73	3-5 : 1908	3-4/w: 6815	5-6: 1795
Bretagne	:3038	65_+ : 6713			30+ : 404	5-6/w: 3402	7-9: 391
(Other)	:25275				6-9 : 389	7/w : 6593	NA: 85
binge	Pbsleep		Tabac				
<2/m:10323	Never:20605		Frequent : 93	176			
0 :34345	Often: 1017	2	Never :390	080			
1/m : 6018	Rare :22134		Occasional: 48	588			
1/w : 1800	NA: 30		NA: 97				
7/w : 374							
NA : 81							

• 'true' missing values: mask an underlying category among the available categories.

• not a missing values when it is a new category (keep a category NA).

Principal components method to explore categorical data: Multiple Correpondence Analysis⁴⁴

 $^{^{44}\}text{M}.$ Greenacre's books, MCA and related methods. 2006. Chapman and Hall/CRC.

Multiple Correspondence Analysis (MCA)

 $X_{n \times m}$ *m* categorical variables coded with dummies in $A_{n \times C_j}$, with C_j the tot number of categories. For a category *c*, its frequency: $p_c = n_c/n$.

MCA: A SVD on weighted matrix: $Z = \frac{1}{\sqrt{mn}} (A - 1p^T) D_p^{-1/2} = U \Lambda V'$

The principal component $(F = U\Lambda^{1/2})$ satisfies:

$$\begin{aligned} \arg \max_{F \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \eta^2(F, X_j) \\ \eta^2(F, X_j) &= \frac{\sum_{c=1}^{C_j} n_c(\bar{F}_c - \bar{F})^2}{\sum_{i=1}^n \sum_{c=1}^{C_j} (F_{ic} - \bar{F})^2} = \frac{\text{Between variance}}{\text{Total variance}} \end{aligned}$$

Benzecri, 1973 : "In data analysis the mathematical problems reduces to computing eigenvectors; all the science (the art) is in finding the right matrix to diagonalize"

Iterative MCA algorithm:

	1/4	1/0	1/0	1/4.4	1		1/1 -	1/1 h	1/1 -	V0 e	10 4	V0 ~	1/0 h	
	VI	V2	V3	 V14			V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u		ind 1	1	0	0	NA	NA	1	0	
ind 2	NA	f	g	u		ind 2	NA	NA	NA	0	1	1	0	
ind 3	а	е	h	v		ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v		ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u		ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u		ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v		ind 7	0	0	1	0	1	NA	NA	
ind 1232	с	f	h	v		ind 1232	0	0	1	0	1	0	1	

 $^{^{45}}$ J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. Journal of classification.

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

	V1	V2	V3	 V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u	ind 1	1	0	0	0.41	0.59	1	0	
ind 2	NA	f	g	u	ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	а	е	ĥ	v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v	ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	с	f	h	v	ind 1232	0	0	1	0	1	0	1	

 $^{^{45}}$ J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. *Journal of classification.*

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

- 2 iterate until convergence
 - (a) estimation: MCA on the completed data \rightarrow U, A, V

	V1	V2	V3	 V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u	ind 1	1	0	0	0.41	0.59	1	0	
ind 2	NA	f	g	u	ind 2	0.20	0.30	0.50	0	1	1	0	
ind 3	а	е	h	v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v	ind 7	0	0	1	0	1	0.27	0.78	
ind 1232	с	f	h	v	ind 1232	0	0	1	0	1	0	1	

⁴⁵J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. *Journal of classification.*

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

- 2 iterate until convergence
 - (a) estimation: MCA on the completed data $\rightarrow U, \Lambda, V$
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$

	V1	V2	V3	 V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u	ind 1	1	0	0	0.65	0.35	1	0	
ind 2	NA	f	g	u	ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	а	е	h	v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v	ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	с	f	h	v	ind 1232	0	0	1	0	1	0	1	

 $^{^{45}}$ J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. Journal of classification.

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

2 iterate until convergence

- (a) estimation: MCA on the completed data \rightarrow U, A, V
- (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$
- (c) column margins are updated

	V1	V2	V3	 V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u	ind 1	1	0	0	0.65	0.35	1	0	
ind 2	NA	f	g	u	ind 2	0.11	0.20	0.69	0	1	1	0	
ind 3	а	е	h	v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v	ind 7	0	0	1	0	1	0.30	0.40	
ind 1232	с	f	h	v	ind 1232	0	0	1	0	1	0	1	

 $^{^{45}}$ J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. Journal of classification.

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

- 2 iterate until convergence
 - (a) estimation: MCA on the completed data \rightarrow U, A, V
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$
 - (c) column margins are updated

	V1	V2	V3	 V14	1		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	NA	g	 u		ind 1	1	0	0	0.71	0.29	1	0	
ind 2	NA	f	g	u		ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	а	е	h	v		ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h	v		ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h	u		ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h	u		ind 6	0	0	1	0	1	0	1	
ind 7	с	f	NA	v		ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	с	f	h	v		ind 1232	0	0	1	0	1	0	1	

\Rightarrow the imputed values can be seen as degree of membership

library(missMDA); ?imputeMCA

100

⁴⁵J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis. *Journal of classification*.

Iterative MCA algorithm:

1 initialization: imputation of the indicator matrix (proportion)

- 2 iterate until convergence
 - (a) estimation: MCA on the completed data \rightarrow U, A, V
 - (b) imputation with the fitted matrix $\hat{\mu} = U_S \Lambda_S^{1/2} V'_S$
 - (c) column margins are updated

	V1	V2	V3	\	V14		V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h	
ind 1	а	е	g		u	ind 1	1	0	0	0.71	0.29	1	0	
ind 2	С	f	g		u	ind 2	0.12	0.29	0.59	0	1	1	0	
ind 3	а	е	h		v	ind 3	1	0	0	1	0	0	1	
ind 4	а	е	h		v	ind 4	1	0	0	1	0	0	1	
ind 5	b	f	h		u	ind 5	0	1	0	0	1	0	1	
ind 6	с	f	h		u	ind 6	0	0	1	0	1	0	1	
ind 7	с	f	g		v	ind 7	0	0	1	0	1	0.37	0.63	
ind 1232	с	f	h		v	ind 1232	0	0	1	0	1	0	1	

Two ways to obtain categories: majority or draw

⁴⁵J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence 100 Analysis. *Journal of classification.*

Multiple imputation with MCA⁴⁶

• Variability of the parameters: M sets $(U_{n \times S}, \Lambda_{S \times S}, V_{m \times S}^{\top})$ using a non-parametric bootstrap

			\sim_1					Λ_2					$\wedge M$			
ſ	1	0		1	0	0	1	0	 1	0	0]	1	0	 1	0
	1	0		1	0	0	1	0	 1	0	0		1	0	 1	0
	1	0		0.01	0.80	0.19	1	0	 0.60	0.2	0.20		1	0	 0.11	0.74
	0.25	0.75		0	0	1	0.26	0.74	0	0	1		0.20	0.80	0	0
	0	1		0	0	1	0	1	0	0	1		0	1	0	0

2 Categories drawn from multinomial distribution using the values in $(\hat{X}_m)_{1 \le m \le M}$

Γ	у	 Attack	У	 Attack	1	у	 Attack
	у	 Attack	У	 Attack		у	 Attack
	у	 Suicide	у	 Attack		У	 Suicide
	n	 Accident	n	 Accident		n	 Accident
	n	 S	n	 В		n	 Suicide

library(missMDA); MIMCA()

⁴⁶Audigier, Husson, J. MIMCA: Multiple imputation for categorical variables with multiple correspondence analysis. 2017. *Statistics & Computing*.

Multiple imputation for categorical data

Joint modeling

- Log-linear model (Schafer, 1997) (cat): pb many levels
- Latent class models (Vermunt, 2014) nonparametric Bayesian (Si & Reiter, 2014, Murray & Reiter, 2016) (MixedDataImpute, NPBayesImpute, NestedCategBayesImpute)

Conditional modeling

• logistic, multinomial logit, forests (mice)

 \Rightarrow MIMCA provides valid inference (ex. logistic reg with missing) applied to data of various size (many levels, rare levels)

Time (seconds)	Titanic	Galetas	Income		
rows-variables-levels	(2000 - 4 - 4)	(1000 - 4 -11)	(6000 - 14 - 9)		
MIMCA	2.750	8.972	58.729		
Loglinear	0.740	4.597	NA		
Nonparametric bayes	10.854	17.414	143.652		
Cond logistic	4.781	38.016	881.188		
Cond forests	265.771	112.987	6329.514		

Categorical imputation in practice

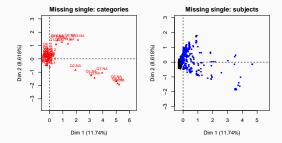
 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

```
In missMDA (Youtube)
```

```
data(vnf)
summary(vnf)
MCA(vnf)
#1) select the number of components
nb < - estim ncpMCA(vnf, ncp.max = 5) #Time-consuming, nb = 4
#2) Impute the indicator matrix
res.impute <- imputeMCA(vnf, ncp = 4)</pre>
res.impute$tab.disj
res.impute$comp
summary(res.impute$comp)
# MCA on the incomplete data vnf
res.mca <- MCA(vnf, tab.disj = res.impute$tab.disj)</pre>
plot(res.mca, invisible=c("var"))
plot(res.mca,invisible=c("ind"),autoLab="yes", selectMod="cos2 5", cex = 0.6)
```

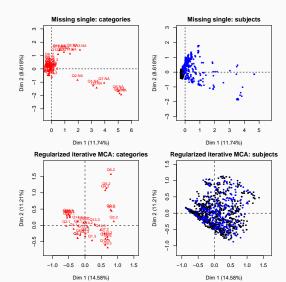
Categorical imputation in practice

 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



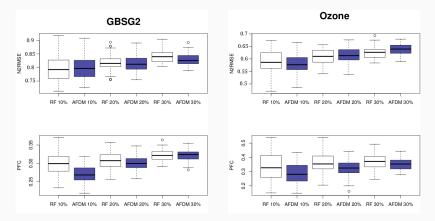
Categorical imputation in practice

 \bullet 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents



Comparison with respect to the imputation

- Mixed data: imputation with Factorial Analysis for Mixed Data⁴⁷ FAMD.⁴⁸
- \bullet Comparison with Random Forest imputation with RMSE for continuous data
- & proportion of falsely classified entries for categorical data.



⁴⁷F. Husson, et. al. 2017. Exploratory Multivariate Analysis Using R. Chapman & Hall.
⁴⁸Audigier, Husson, J. 2016. A principal components method to impute mixed data. ADAC.

Comparison with respect to the imputation

Imputations with PC methods are appropriate

- for strong linear relationships
- for categorical variables
- especially for rare categories (weights of MCA)

 \Rightarrow Tuning: number of components S (Cross-Validation)

Imputations with RF are appropriate

- for strong non-linear relationships between continuous variables
- when there are interactions
- \Rightarrow No tuning parameters?

Rq: categorical data improve the imputation on continuous data and continuous data improve the imputation on categorical data

Comparison with respect to the imputation

Imputations with PC methods are appropriate

- for strong linear relationships
- for categorical variables
- especially for rare categories (weights of MCA)

 \Rightarrow Tuning: number of components S (Cross-Validation)

Imputations with RF are appropriate

- for strong non-linear relationships between continuous variables (cutting continuous variables into categories)
- when there are interactions (creating interactions)
- \Rightarrow No tuning parameters?

Rq: categorical data improve the imputation on continuous data and continuous data improve the imputation on categorical data

```
> library(missMDA)
```

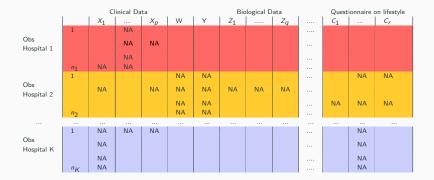
- > res.ncp <- estim_ncpFAMD(ozo)</pre>
- > res.famd <-imputeFAMD(ozo, ncp = 2)</pre>
- > res.famd\$completeObs

```
> library(missForest)
```

```
> res.rf <- missForest(ozo)</pre>
```

```
> res.rf$ximp
```

Missing values in multi-source, multi-scale data



Multilevel component analysis for group of observations

Ex: inhabitants nested within countries $X \in \mathbb{R}^{K \times J}$

- similarities between countries? level 1
- similarities between inhabitants within each country? level 2
- relationship between variables at each level

Analysis of variance: split the sum of squares for each variable j

$$\sum_{i=1}^{I}\sum_{k=1}^{k_{i}}(x_{ijk_{i}})^{2} = \sum_{i=1}^{I}k_{i}(x_{.j.})^{2} + \sum_{i=1}^{I}k_{i}(x_{ij.} - x_{.j.})^{2} + \sum_{i=1}^{I}\sum_{k=1}^{k_{i}}(x_{ijk_{i}} - x_{ij.})^{2}$$

Multilevel PCA (MLPCA)

 \Rightarrow Model for the between and within part i = 1, ..., I groups, J var

$$X_{i_{(k_i \times J)}} = 1_{k_i} m' + 1_{k_i} F_i^{b'} V^{b'} + F_i^w V^{w'} + E_i$$

- F_i^b ($Q_b \times 1$) between component scores of group *i*
- V^b $(J imes Q_b)$ between loading matrix
- F_i^w $(k_i \times Q_w)$ within component scores of group *i*
- V_w $(J imes Q_w)$ within loading matrix. Constant across groups

Fitted by minimizing the least squares 49

$$\operatorname{argmin}_{(m,F_{i}^{b},V^{b},F_{i}^{w},V^{w})}\sum_{i=1}^{I}\left\|X_{i}-1_{k_{i}}m'-1_{k_{i}}F_{i}^{b'}V^{b'}-F_{i}^{w}V^{w'}\right\|^{2},$$

 $\sum_{i=1}^{l} k_i F_i^b = 0_{Q_b}$ and $1'_{k_i} F_i^w = 0_{Q_w}$, $\forall i$ for identifiability.

⁴⁹Timmerman. 2006. Multilevel component analysis. Br J Math Stat Psychol.

i = 1, ..., I groups, J var, k_i nb obs in group i

$$\operatorname{argmin}_{(m,F_{i}^{b},V^{b},F_{i}^{w},V^{w})}\sum_{i=1}^{l}\left\|X_{i}-1_{k_{i}}m'-1_{k_{i}}F_{i}^{b'}V^{b'}-F_{i}^{w}V^{w'}\right\|^{2},$$

 $\sum_{i=1}^{l} k_i F_i^b = 0_{Q_b}$ and $1'_{k_i} F_i^w = 0_{Q_w}$, $\forall i$ for identifiability.

 (\hat{F}^b, \hat{V}^b) : Weigthed PCA on the between part: SVD on $D_w X_m$; X_m $(I \times J)$ the means of the variables per group, D_w $(I \times I)$ $D_{w_{ii}} = \sqrt{k_i}$

 (\hat{F}^w, \hat{V}^w) PCA on the within part: SVD on the centered data per group X^w ($K \times J$), $K = \sum_i k_i$

- \Rightarrow With missing values: Weighted Least Squares
- \Rightarrow Iterative imputation algorithm (imputation estimation)

Iterative MLPCA

- 2. iteration ℓ : estimation of the between structure
 - SVD $D_w X_m^{\ell} = PDQ'$; Q_b eigenvectors are kept: $\hat{F}_i^b = [D_w^{-1}P_{Q_b}]_i$, \hat{F}^b concatenation by row of $[\mathbf{1}_{k_i}\hat{F}_i^b]$ $\hat{V}^b = Q_{Q_b}D_{Q_b}$, $(J \times Q_b)$
 - the between hat matrix is computed: $(\hat{X}^b)^\ell = \hat{F}^b \hat{V}^{b'}$
- 3. iteration ℓ : imputation of the missing values with the fitted values
 - $\hat{X}^{\ell} = \mathbf{1}_{K} \hat{m}^{(\ell-1)'} + (\hat{X}^{b})^{\ell} + (\hat{X}^{w})^{(\ell-1)}$. The newly imputed dataset is $X^{\ell} = W \odot X + (\mathbf{1}_{K} \times \mathbf{1}'_{J} W) \odot \hat{X}^{\ell}$
 - \hat{m}^{ℓ} is computed on X^{ℓ}
- 4. iteration ℓ : estimation of the within structure
 - SVD $(X^w)^{\ell} = PDQ'$; Q_w eigenvectors are kept: $F^w = P_{Q_w} (K \times Q_w)$ $V^w = Q_{Q_w} D_{Q_w} (J \times Q_w)$
 - the within hat matrix is computed $(\hat{X}^w)^\ell = \hat{F}^w \hat{V}^{w'}$
- 5. iteration ℓ : imputation of the missing values with the fitted values

•
$$X^{\ell+1} = W \odot X + (\mathbf{1}_K \times \mathbf{1}'_J - W) \odot \left(\mathbf{1}_K \hat{m}^{(\ell)'} + (\hat{X}^b)^\ell + (\hat{X}^w)^\ell\right)$$

m̂^{ℓ+1} is computed on X^{ℓ+1}

The simulated data:

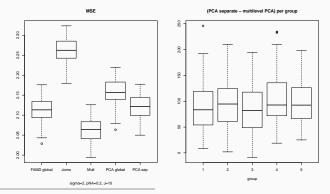
- $X_{i_{(k_i \times J)}} = 1_{k_i}m' + 1_{k_i}F_i^{b'}V^{b'} + F_i^{w}V^{w'} + E_i$, with $E_{ijk_i} \sim \mathcal{N}(0,\sigma)$
- 5 groups, 10 variables, $Q_b = 2$, $Q_w = 2$

Many scenarios are considered:

- number of individuals per group: 10-20, 70-100
- level of noise: low, strong
- percentage of missing values: 10%, 25%, 40%
- missing values mechanism: MCAR, MAR

 \Rightarrow Prediction error: $\frac{1}{KJ}\sum (x_{ijk_i} - x_{ijk_i})^2$

- Conditional model with random effect regression ⁵⁰, implemented in micemd
- Random forests imputation
- Global PCA Separate PCA on each table
- Global mixed PCA (FAMD) with hospital as a variable



⁵⁰Audigier, White, Jolani, Debray, Quartagno, Carpenter, van Buuren, S. & Resche-Rigon. 2018. 114 Multiple imputation for multilevel data with continuous and binary variables. *Statistical Science*.

- PCA mixed give similar results than Random Forest
- mice (random effect model): difficulties with large dimensions
- Separate PCA: pb with many missing values
- Multilevel PCA is equivalent to global PCA when no group effect
- Other methods do not handle categorical variables
- \Rightarrow Multilevel PCA Computationaly fast in comparison to mice or RF. Implemented R package missMDA
- Numbers of components Q_b and Q_w ?

• Inference after imputation. Underestimation of the variance with single imputation

- PCA mixed give similar results than Random Forest
- mice (random effect model): difficulties with large dimensions
- Separate PCA: pb with many missing values
- Multilevel PCA is equivalent to global PCA when no group effect
- Other methods do not handle categorical variables

 \Rightarrow Multilevel PCA Computationaly fast in comparison to mice or RF. Implemented R package missMDA

• Numbers of components Q_b and Q_w ? cross-validation?

• Inference after imputation. Underestimation of the variance with single imputation

- PCA mixed give similar results than Random Forest
- mice (random effect model): difficulties with large dimensions
- Separate PCA: pb with many missing values
- Multilevel PCA is equivalent to global PCA when no group effect
- Other methods do not handle categorical variables

 \Rightarrow Multilevel PCA Computationaly fast in comparison to mice or RF. Implemented R package missMDA

• Numbers of components Q_b and Q_w ? cross-validation?

• Inference after imputation. Underestimation of the variance with single imputation

Multiple imputation: bootstrap + drawn from the predictive distribution $\mathcal{N}\left(\mathbf{1}_{\mathcal{K}}\hat{m}' + \hat{F}^{b}\hat{B}^{b'} + \hat{F}^{w}\hat{B}^{w'}, \hat{\sigma}^{2}\right)$

Combining data from different institutional databases promises many advantages in personalizing medical care (large n, more chance for finding patients like me)

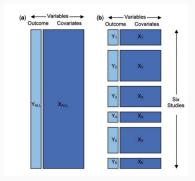
Combining data from different institutional databases promises many advantages in personalizing medical care (large n, more chance for finding patients like me)

 \Rightarrow The problem: high barriers to aggregation of medical data

- lack of standardization of ontologies
- privacy concerns
- proprietary attitude towards data, reluctance to cede control
- complexity/size of aggregated data, updates problems

Solution: distributed computation

- \Rightarrow Data aggregation is not always necessary
- \Rightarrow Split the storage of aggregated data across several centers



- \Rightarrow Data can stay at site
- \Rightarrow Computations can be distributed (share burden)
- \Rightarrow Hospitals only share intermediate results instead of the raw data

Topology: master-workers (Wolfson, et. al (2010))

 \Rightarrow Ex: Each site share the sum of age \tilde{X}_i and the number of patients n_i . The master computes $\bar{X} = \sum n_i \tilde{X}_i / \sum n_i$

118

 \Rightarrow Many models fitting can be implemented:

- Maximizing a likelihood. Intermediate computations break up into sums of quantities computed on local data at sites. Log-likelihood, score function and Fisher information can partition into sums. (OK for logistic regression)
- Singular Value Decomposition (ex power method involve inner product and sum). Iterative algorithms available for SVD using quantities computed on local data at sites.
- And more.

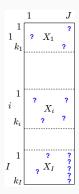
Implemented in the R package discomp⁵¹

⁵¹Narasimhan et. al. 2017. Software for Distributed Computation on Medical Databases: A Demonstration Project.

Privacy preserving rank k SVD

```
Data: each worker has private data X_i \in \mathcal{R}^{n_i \times p}
Result: V \in \mathbb{R}^{p \times k}, and d_1 \ge \ldots d_k \ge 0
V \leftarrow 0, d \leftarrow 0 foreach worker site j do
     U^{[j]} = 0:
     transmit n_i to master;
end
for i \leftarrow 1 to k do
     for each worker site j do u^{[j]} \leftarrow (1, 1, \dots, 1) of length n_i;
     ||u|| \leftarrow \sqrt{\sum_j n_j};
     transmit ||u||, V, and D to workers:
     repeat
          foreach worker site j do
               u^{[j]} \leftarrow u^{[j]} / ||u||:
               calculate v^{[j]} \leftarrow (\boldsymbol{X}^{[j]} - U^{[j]}DV^{\top})^{\top}u^{[j]};
               transmit v^{[j]} to master;
          end
          v \leftarrow \sum_{j} v^{[j]};
          v \leftarrow v/||v||;
          transmit v to workers;
          foreach worker site j do
               calculate u^{[j]} \leftarrow X^{[j]}v:
               transmit ||u^{[j]}|| to master:
          end
          ||u|| \leftarrow \sum_{j} ||u^{[j]}||;
          transmit ||u|| to workers;
          d_i \leftarrow ||u||;
     until convergence;
     V \leftarrow \mathtt{cbind}(V, v);
     for each worker site j do U^{[j]} \leftarrow \text{cbind}(U^{[j]}, u^{[j]});
end
```

Iterative multilevel distributed imputation (distributed iterative MLPCA) ⁵²



 $\Rightarrow \text{Impute the data of one hospital using the data of the others}$ $\Rightarrow \text{Incentive to encourage the hospitals to participate in the project}$

 $^{^{52}}$ Robin, Husson, Narasimhan, J. (2018). Imputation of mixed data with multilevel singular value decomposition JCGS

Ex of missing values per group of variables: Journal impact factors

Data from journalmetrics.com

443 journals (Computer Science, Statistics, Probability and Mathematics),

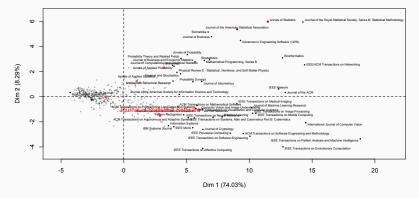
15 years,

3 types of measures:

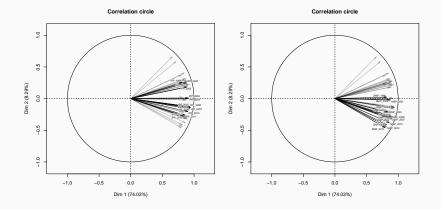
- IPP Impact Per Publication: like the ISI impact factor but for 3 (rather than 2) years.
- SNIP Source Normalized Impact Per Paper: Tries to weight by the number of citations per subject field to adjust for different citation cultures.
- SJR SCImago Journal Rank: Tries to capture average prestige per publication.

Many missing values per block of years.

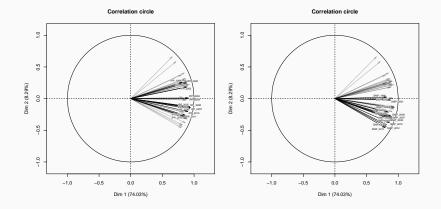
Journals



⁵³Husson, J. 2013. Handling missing values in Multiple Factor Analysis. FQP.

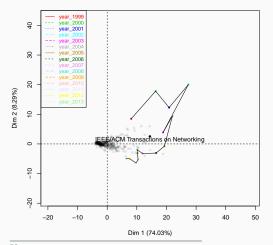


 $^{53}\mbox{Husson, J. 2013.}$ Handling missing values in Multiple Factor Analysis. FQP.



 $^{53}\mbox{Husson, J. 2013.}$ Handling missing values in Multiple Factor Analysis. FQP.

ACM Transactions on Networking trajectory



Individual factor map

⁵³Husson, J. 2013. Handling missing values in Multiple Factor Analysis. FQP.

MFA imputation in practice

```
> library(denoiseR)
> librarv(missMDA)
> data(impactfactor)
> year=NULL; for (i in 1: 15) year= c(year, seq(i,45,15))
> res.imp <- imputeMFA(impactfactor, group = rep(3, 15), type = rep("s", 15))</pre>
##
> res.mfa <-MFA(res.imp$completeObs, group=rep(3,15), type=rep("s",15),</pre>
name.group=paste("year", 1999:2013,sep="_"),graph=F)
plot(res.mfa, choix = "ind", select = "contrib 15", habillage = "group", cex = 0.7)
points(res.mfa$ind$coord[c("Journal of Statistical Software",
"Journal of the American Statistical Association", "Annals of Statistics"),
1:2]. col=2. cex=0.6)
text(res.mfa$ind$coord[c("Journal of Statistical Software"), 1],
res.mfa$ind$coord[c("Journal of Statistical Software"), 2],cex=1,
```

labels=c("Journal of Statistical Software"),pos=3, col=2)

```
plot.MFA(res.mfa,choix="var", cex=0.5,shadow=TRUE, autoLab = "yes")
```

```
plot(res.mfa, select="IEEE/ACM Transactions on Networking",
partial="all",
habillage="group",unselect=0.9,chrono=TRUE)
```

Low rank matrix completion for heterogeneous (count data)

- Robin, J., Moulines & Sardy. Low-rank model with covariates for count data with missing values. 2019. *Journal of Multivariate Analysis* (slides)
- Robin, Klopp, J., Moulines & Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. JASA.
- Sportisse, Boyer, J. Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data. 2020. *NeurIPS*.

Works of Madeleine Udell:

- Missing Value Imputation for Mixed Data Through Gaussian Copula. 2020. ACM SIGKDD conference.
- Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula. 2020. *NeurIPS*.

Take home message: estimation/imputation with low rank methods

 Principal component methods powerful for single & multiple imputation of quanti & categorical data (rare categories): dimensionality reduction & capture similarities between obs and variables.

 \Rightarrow Correct inferences for analysis model based on relationships between pairs of variables

 \Rightarrow Requires to choose the number of dimensions S

- SVD can be distributed
- Handling missing values in PCA, MCA, FAMD, MFA, Correspondence analysis for contingency tables
- Preprocessing before clustering clustering with missing values

Package missMDA: http://factominer.free.fr/missMDA/index.html

Youtube: https://www.youtube.com/watch?v=OOM8_FH6_8o&list= PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_playlist

Article JSS: https://www.jstatsoft.org/article/view/v070i01

MOOC Exploratory Multivariate Data Analysis

Package FactoShiny (Shiny interface), FactoInvestigate (for automatic reporting)

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Collaborators on supervised learning with missing values

- M. Le Morvan, Researcher, INRIA, Paris.
- E. Scornet, Asso. Pr., Ecole Polytechnique, Paris. Topic: random forests.
- G. Varoquaux, Researcher, INRIA, Paris. Topic: machine learning/ Scikitlearn

- \Rightarrow Random Forests with missing values
- 1. Consistency of supervised learning with missing values. (2019). Revis JMLR.
- \Rightarrow Linear regression with missing values MultiLayer perceptron

2. Linear predictor on linearly-generated data with missing values: non consistency and solutions. AISTAT2020.

3. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020. Oral.

⇒ Impute then regress: What's a good imputation to predict with missing values? Neurips2021. Spotlight.

Supervised learning framework

- A feature matrix X and a response vector Y
- Find a prediction function that minimizes the expected risk

Bayes rule: $f^* \in \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}\left[\ell(f(X), Y)\right]; \quad f^*(X) = \mathbb{E}[Y|X]$

• Empirical risk: $\hat{f}_{\mathcal{D}_{n,\text{train}}} \in \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f(X_i), Y_i\right) \right)$

A new data $\mathcal{D}_{n,\mathrm{test}}$ to estimate the generalization error rate

• Bayes consistent: $\mathbb{E}[\ell(\hat{f}_n(X), Y)] \xrightarrow[n \to \infty]{} \mathbb{E}[\ell(f^*(\mathbf{X}), Y)]$

Supervised learning framework

- A feature matrix X and a response vector Y
- Find a prediction function that minimizes the expected risk

Bayes rule: $f^* \in \underset{f: \mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}\left[\ell(f(X), Y)\right]; \quad f^*(X) = \mathbb{E}[Y|X]$

• Empirical risk: $\hat{f}_{\mathcal{D}_{n,\text{train}}} \in \underset{f:\mathcal{X} \to \mathcal{Y}}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f(X_i), Y_i\right) \right)$

A new data $\mathcal{D}_{n,\mathrm{test}}$ to estimate the generalization error rate

• Bayes consistent: $\mathbb{E}[\ell(\hat{f}_n(X), Y)] \xrightarrow[n \to \infty]{} \mathbb{E}[\ell(f^*(\mathbf{X}), Y)]$

Differences with classical litterature

<u>Aim</u>: target an outcome Y (not estimate parameters and their variance) Specificities: train & test sets with missing values

 \Rightarrow Is it possible to use previous approaches (EM - impute), consistent? \Rightarrow Do we need to design new ones?

Imputation with the same model

Easy to implement for univariate imputation: The means $(\hat{\mu}_1, ..., \hat{\mu}_d)$ of each colum of the train. Also OK for Gaussian imputation.

Issue: Many methods are "black-boxes" and take as an input the incomplete data and output the completed data (mice, missForest)

Separate imputation

Impute train and test separately (with a different model)

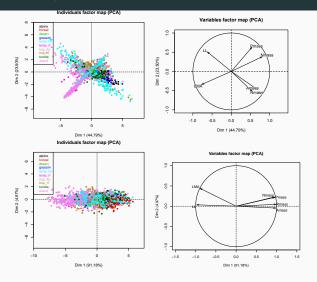
Issue: Depends on the size of the test set? one observation?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned only on the training imputed data set

Issue: Sometimes no training set at test time

Mean imputation is bad for estimation



PCA with mean imputation

library(FactoMineR)
PCA(ecolo)
Warning message: Missing
are imputed by the mean
of the variable:
You should use imputePCA
from missMDA

EM-PCA

library(missMDA)
imp <- imputePCA(ecolo)
PCA(imp\$comp)</pre>

J. (2016). miss-MDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ⁵⁴ n = 69000 species - 6 traits. Estimated correlation between Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

⁵⁴Wright, I. et al. (2004). The worldwide leaf economics spectrum. *Nature*.

Constant (mean) imputation is consistent for prediction

$$ilde{X}=X\odot(1-M)+ ext{NA}\odot M.$$
 New feature space is $\widetilde{\mathbb{R}}^d=(\mathbb{R}\cup\{ ext{NA}\})^d$

$$Y = \begin{pmatrix} 4.6\\ 7.9\\ 8.3\\ 4.6 \end{pmatrix} \quad \tilde{X} = \begin{pmatrix} 9.1 & \text{NA} & 1\\ 2.1 & \text{NA} & 3\\ \text{NA} & 9.6 & 2\\ \text{NA} & 5.5 & 6 \end{pmatrix} \quad X = \begin{pmatrix} 9.1 & 8.5 & 1\\ 2.1 & 3.5 & 3\\ 6.7 & 9.6 & 2\\ 4.2 & 5.5 & 6 \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

Find a prediction function that minimizes the risk.

Bayes rule:
$$f^* \in \underset{f: \widetilde{\mathbb{R}}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\left(Y - f(\widetilde{X})\right)^2\right]$$
.

$$f^{*}(\tilde{X}) = \mathbb{E}\left[Y \mid \tilde{X}\right] = \mathbb{E}\left[Y \mid X_{obs(M),M}\right]$$
$$= \sum_{m \in \{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m\right] \mathbb{1}_{M=m}$$

 \Rightarrow One model per pattern (2^{*d*}) (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent for prediction

 $\tilde{X} = X \odot (1 - M) + \mathbb{NA} \odot M$. New feature space is $\widetilde{\mathbb{R}}^d = (\mathbb{R} \cup {\mathbb{NA}})^d$.

$$Y = \begin{pmatrix} 4.6\\ 7.9\\ 8.3\\ 4.6 \end{pmatrix} \quad \tilde{X} = \begin{pmatrix} 9.1 & \text{NA} & 1\\ 2.1 & \text{NA} & 3\\ \text{NA} & 9.6 & 2\\ \text{NA} & 5.5 & 6 \end{pmatrix} \quad X = \begin{pmatrix} 9.1 & 8.5 & 1\\ 2.1 & 3.5 & 3\\ 6.7 & 9.6 & 2\\ 4.2 & 5.5 & 6 \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

Find a prediction function that minimizes the risk.

Bayes rule:
$$f^* \in \underset{f: \widetilde{\mathbb{R}}^d \to \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[\left(Y - f(\widetilde{X})\right)^2\right]$$
.

$$f^{*}(\tilde{X}) = \mathbb{E}\left[Y \mid \tilde{X}\right] = \mathbb{E}\left[Y \mid X_{obs(M),M}\right]$$
$$= \sum_{m \in \{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m\right] \mathbb{1}_{M=m}$$

 \Rightarrow One model per pattern (2^{*d*}) (Rubin, 1984, generalized propensity score)

Framework - assumptions

- $Y = f(X) + \varepsilon$
- $X = (X_1, \dots, X_d)$ has a continuous density g > 0 on $[0, 1]^d$
- $\|f\|_{\infty} < \infty$
- Missing data MAR on X_1 with $M_1 \perp X_1 | X_2, \ldots, X_d$.
- $(x_2, \ldots, x_d) \mapsto \mathbb{P}[M_1 = 1 | X_2 = x_2, \ldots, X_d = x_d]$ is continuous
- ε is a centered noise independent of (X, M_1)

(remains valid when missing values occur for several variables X_1, \ldots, X_j)

Constant (mean) imputation is consistent

Constant imputed entry $x' = (x'_1, x_2, ..., x_d)$: $x'_1 = x_1 \mathbb{1}_{M_1=0} + \alpha \mathbb{1}_{M_1=1}$ **Theorem. (J. et al. 2019)** $f^*_{impute}(x') = \mathbb{E}[Y|X_2 = x_2, ..., X_d = x_d, M_1 = 1]$ $\mathbb{1}_{x'_1=\alpha} \mathbb{1}_{\mathbb{P}[M_1=1|X_2=x_2,...,X_d=x_d]>0}$ $+ \mathbb{E}[Y|X = x'] \mathbb{1}_{x'_1=\alpha} \mathbb{1}_{\mathbb{P}[M_1=1|X_2=x_2,...,X_d=x_d]=0}$ $+ \mathbb{E}[Y|X_1 = x_1, X_2 = x_2, ..., X_d = x_d, M_1 = 0] \mathbb{1}_{x'_1\neq\alpha}.$

Prediction with mean is equal to the Bayes function almost everywhere

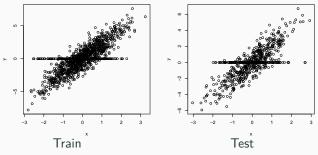
$$f^{\star}_{impute}(X') = f^{\star}(\tilde{X}) = \mathbb{E}[Y|\tilde{X} = \tilde{x}]$$

Rq: pointwise equality if using a constant out of range.

 \Rightarrow Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- Need a lot of data (asymptotic result) and a super powerful learner
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:

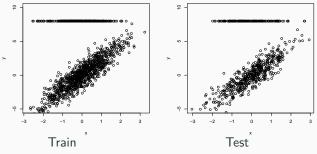


Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- Need a lot of data (asymptotic result) and a super powerful learner
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range



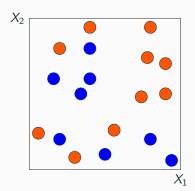
Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

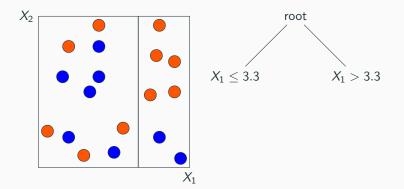


root

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

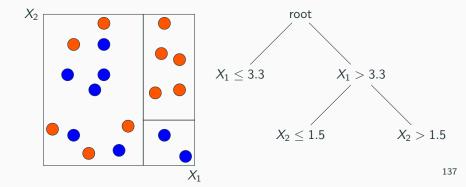


137

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimises the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{argmin}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

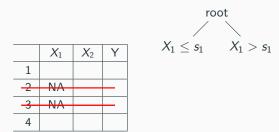


CART with missing values

root

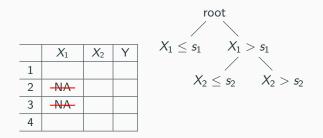
	X_1	X_2	Υ
1			
2	NA		
3	NA		
4			

CART with missing values



1) Select variable and threshold on observed values (1 & 4 for X_1) $\mathbb{E}\Big[\Big(Y - \mathbb{E}[Y|X_j \le z, M_j = 0]\Big)^2 \cdot \mathbb{1}_{X_j \le z, M_j = 0} + \Big(Y - \mathbb{E}[Y|X_j > z, M_j = 0]\Big)^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\Big].$

CART with missing values



1) Select variable and threshold on observed values (1 & 4 for X_1) $\mathbb{E}\Big[\Big(Y - \mathbb{E}[Y|X_j \le z, M_j = 0]\Big)^2 \cdot \mathbb{1}_{X_j \le z, M_j = 0} + \Big(Y - \mathbb{E}[Y|X_j > z, M_j = 0]\Big)^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\Big].$

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: $\mathcal{B}ernoulli(\frac{\#L}{\#L+\#R})$ (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)

• Surrogate split: Search another variable that gives a close partition (rpart)

One step: select the variable, the threshold and propagate missing values

$$\{ \widetilde{X}_j \leq z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A} \} \text{ vs } \{ \widetilde{X}_j > z \}$$
$$\{ \widetilde{X}_j \leq z \} \text{ vs } \{ \widetilde{X}_j > z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A} \}$$
$$\{ \widetilde{X}_i \neq \mathbb{N}\mathbb{A} \} \text{ vs } \{ \widetilde{X}_i = \mathbb{N}\mathbb{A} \}.$$

- The splitting location z depends on the missing values
- Missing values treated like a category (well to handle $\mathbb{R} \cup NA$)
- Good for informative pattern (*M* explains *Y*)

Targets one model per pattern:

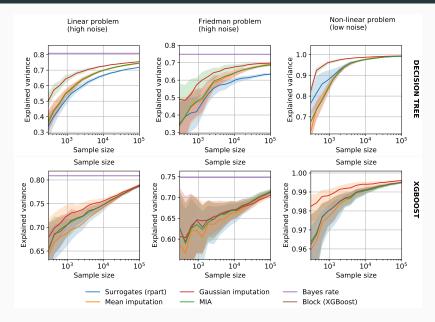
$$\mathbb{E}\left[Y\big|\tilde{X}\right] = \sum_{m \in \{0,1\}^d} \mathbb{E}\left[Y|X_{obs(m)}, M = m\right] \mathbb{1}_{M=m}$$

• Implementation ⁵⁵: grf package, scikit-learn, partykit

 \Rightarrow Extremely good performances in practice for any mechanism. ⁵⁵implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace

the missing entries once by $+\infty$ and once by $-\infty$

Consistency: 40% missing values MCAR



Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

Linear model with missing values

Linear model:

$$Y = \beta_0 + \langle X, \beta
angle + \varepsilon, \quad X \in \mathbb{R}^d, \ \varepsilon \text{ gaussian}.$$

Existing solutions

- ML with EM algo. (available implementation struggles for large d)
- Multiple imputation (few aggregation strategies for predictive models) \Rightarrow Mainly to estimate parameters in Missing At Random setting

Aim: Predict Y (out of sample) with any missing value mechanism $\tilde{X} = X \odot (1 - M) + \text{NA} \odot M$. New feature space is $\tilde{\mathbb{R}}^d = (\mathbb{R} \cup \{\text{NA}\})^d$.

Bayes rule:
$$f^* \in \underset{f: \mathbb{R}^d \to \mathbb{R}}{\arg \min} \mathbb{E}\left[\left(Y - f(\tilde{X})\right)^2\right]$$

$$f^*(ilde{X}) = \mathbb{E}\left[Y \mid ilde{X}
ight] = \sum_{m \in \{0,1\}^d} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m
ight] \ \mathbb{1}_{M=m}$$

 \Rightarrow One model per pattern (2^d) (Rubin, 1984, generalized propensity score) 17

Example

Let $Y = X_1 + X_2 + \varepsilon$, where $X_2 = \exp(X_1) + \varepsilon_1$. Now, assume that only X_1 is observed. Then, the model can be rewritten as

$$Y = X_1 + \exp(X_1) + \varepsilon + \varepsilon_1,$$

where $f(X_1) = X_1 + \exp(X_1)$ is the Bayes predictor. In this example, the submodel for which only X_1 is observed is not linear.

 \Rightarrow There exists a large variety of submodels for a same linear model. Depend on the structure of X and on the missing-value mechanism.

Explicit Bayes predictor with missing values

Linear model:

$$Y = \beta_0 + \langle X, \beta \rangle + \varepsilon, \quad X \in \mathbb{R}^d, \ \varepsilon \text{ gaussian}.$$

Bayes predictor for the linear model:

$$f^{\star}(\tilde{X}) = \mathbb{E}[Y|\tilde{X}] = \mathbb{E}[\beta_0 + \beta^{\mathsf{T}}X \mid M, X_{obs(M)}]$$

= $\beta_0 + \beta^{\mathsf{T}}_{obs(M)}X_{obs(M)} + \beta^{\mathsf{T}}_{mis(M)} \mathbb{E}[X_{mis(M)} \mid M, X_{obs(M)}]$

Assumptions on covariates and missing values

- 1. Gaussian pattern mixture model, PMM: $X \mid (M = m) \sim \mathcal{N}(\mu_m, \Sigma_m)$
- 2. Gaussian assumption $X \sim \mathcal{N}(\mu, \Sigma) + \mathsf{MCAR}$ and MAR
- 3. (Also for Gaussian assumption + MNAR self mask gaussian)

Under Assump. the Bayes predictor is linear per pattern

$$f^{\star}(X_{obs}, M) = \beta_{0}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

use of obs instead of obs(M) for lighter notations - Expression for 2.

Expanded Bayes predictor

Under GPMM, bayes predictor is linear per pattern \Leftrightarrow linear model in W $f^*(ilde X)=\langle W,\delta
angle$

W an expansion (2^d blocks) & parameters $\delta \in \mathbb{R}^d$ function of β, μ_m, Σ_m

	(1	<i>x</i> _{1,1}	$x_{1,2}$		(1)	<i>x</i> _{1,1}	<i>x</i> _{1,2}	0	0	0	0	0 \
	1	<i>x</i> _{2,1}	<i>x</i> _{2,2}		1	<i>x</i> _{2,1}	<i>x</i> _{2,2}	0	0	0	$\begin{array}{c ccccc} 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0 \\ \hline x_{5,2} & 0 \\ \hline x_{6,2} & 0 \\ \hline \end{array}$	
	1	<i>x</i> _{3,1}	NA		0	0	0	1	<i>x</i> _{3,1}	0	0	0
$\tilde{X} =$	1	<i>x</i> _{4,1}	NA	W =	0	0	0	1	<i>x</i> _{4,1}	0	0	0
~ —	1	NA	<i>x</i> _{5,2}	VV —	0	0	0	0	0	1	<i>x</i> _{5,2}	0
	1	NA	<i>x</i> _{6,2}		0	0	0	0	0	1	<i>x</i> _{6,2}	0
	1	NA	NA		0	0	0	0	0	0	0	1
	$\setminus 1$	NA	NA /		0 /	0	0	0	0	0	0	1/

 $W = (\mathbbm{1}_{M=(0,0)}, X_1 \mathbbm{1}_{M=(0,0)}, X_2 \mathbbm{1}_{M=(0,0)}, \mathbbm{1}_{M=(0,1)}, X_1 \mathbbm{1}_{M=(0,1)}, \mathbbm{1}_{M=(1,0)}, X_2 \mathbbm{1}_{M=(1,0)}, \mathbbm{1}_{M=(1,1)}).$

Expanded Bayes predictor

Under GPMM, bayes predictor is linear per pattern \Leftrightarrow linear model in W $f^*(ilde X) = \langle W, \delta \rangle$

W an expansion (2^d blocks) & parameters $\delta \in \mathbb{R}^d$ function of β, μ_m, Σ_m

	(1	<i>x</i> _{1,1}	$x_{1,2}$ \		(1)	<i>x</i> _{1,1}	<i>x</i> _{1,2}	0	0	0	0	0 \
	1	<i>x</i> _{2,1}	<i>x</i> _{2,2}		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0						
	1	<i>x</i> _{3,1}	NA		0	0	0	1	<i>x</i> _{3,1}	0	0	0
$\tilde{X} =$	1	<i>x</i> _{4,1}	NA	W =	0	0	0	1	<i>x</i> _{4,1}	0	0	0
~ -	1	NA	<i>x</i> _{5,2}	<i>vv</i> —	0	0	0	0	0	1	<i>x</i> _{5,2}	0
	1	NA	<i>x</i> _{6,2}		0	0	0	0	0	1	<i>x</i> _{6,2}	0
	1	NA	NA		0	0	0	0	0	0	0	1
	$\setminus 1$	NA	NA /		0 /	0	0	0	0	0	0	1 /

 $W = (\mathbb{1}_{M=(0,0)}, X_1 \mathbb{1}_{M=(0,0)}, X_2 \mathbb{1}_{M=(0,0)}, \mathbb{1}_{M=(0,1)}, X_1 \mathbb{1}_{M=(0,1)}, \mathbb{1}_{M=(1,0)}, X_2 \mathbb{1}_{M=(1,0)}, \mathbb{1}_{M=(1,1)}).$

Problem: Dim of W is $p = \sum_{k=0}^{d} \binom{d}{k} \times (k+1) = 2^{d-1} \times (d+2).$

Need to approximate it: Linear + MLP approximation + Neumiss

20

Linear Approximation

The Bayes predictor can be expressed as a polynome of X and M, which can be truncated to a lower-dimensional approximation.

$$f_{\mathrm{approx}}^{\star}(\tilde{X}) = \beta_{0,0}^{\star} + \sum_{j=1}^{d} \beta_{j,0}^{\star} M_j + \sum_{j=1}^{d} \beta_j^{\star} X_j (1 - M_j).$$

1	1	$X_1 \odot (1 - M_1)$	$X_2 \odot (1 - M_2)$	<i>M</i> ₁	M_2
[1	x _{1,1}	x _{1,2}	0	0
	1	x _{2,1}	x _{2,2}	0	0
1	1	X3,1	0	0	1
	1	X4,1	0	0	1
1	1	0	X5,2	1	0
	1	0	x5,2 x _{6,2}	1	0
1	1	0	0	1	1
(1	0	0	1	1 /

Imputing X by 0 and concatenate M

Impute X by 0 and concatenate $M \Leftrightarrow$ optimize an imputation constant.

	X_1	X_2			X_2				X_1	X_2
	/1.1	3.2		/1.1	3.2	0	0		/1.1	3.2
		0.1		0	3.2 0.1 0 0.9	1	0		<i>C</i> ₁	0.1
Given	4.6	NA	,	4.6	0	0	1	\Leftrightarrow	4.6	<i>C</i> ₂
	4.0	0.9		4.0	0.9	0	0		4.0	0.9
	NA	2.2/		0	2.2	1	0/		$\setminus C_1$	2.2/

Indeed,

$$\beta_j \{X_j(1-M_j) + c_j M_j\} = \beta_j X_j(1-M_j) + \{\beta_j c_j\} M_j$$

Expanded model VS Linear approximation

				expa	anded						linear a	approxima	tion	
1	1	×1,1	×1,2	0	0	0	0	0)	\	(1	×1,1	×1,2	0	0)
	1	×2,1	×2,2	0	0	0	0	0		1	×2,1	×2,2	0	0
	0	0	0	1	×3,1	0	0	0		1	×3,1	0	0	1
	0	0	0	1	×4,1	0	0	0	vs	1	×4,1	0	0	1
	0	0	0	0	0	1	×5,2	0	V3	1	0	×5.2	1	0
	0	0	0	0	0	1	×6,2	0		1	0	×6,2	1	0
	0	0	0	0	0	0	0	1		1	0	0	1	1
(0	0	0	0	0	0	0	1 /		1	0	0	1	1 /

Two estimations strategies:

• Linear reg. to estimate the expanded bayes predictor: rich model, powerful in low dimension. Costly, large variance in high dimension

• Linear approximation: lower approximation capacity smaller variance since it contains fewer parameters

Finite sample bounds - Excess of risk

- Expanded: $\mathcal{O}\left(\frac{2^d}{n}\right)$
- Linear approximation: $\mathcal{O}\left(d^2 + \frac{d}{n}\right)$

Comparing the upper bounds: Risk of expanded is lower than risk of approximation when $n >> \frac{2^d}{d}$

Bayes consistency of the MLP

Theorem. Bayes consistency of a MLP. Le Morvan et al. (2020)

Under linear model + Gaussian pattern mixture model, a MLP:

- with one hidden layer containing 2^d hidden units
- ReLU activation functions

fed with [X ⊙ (1 − M), M] (X̃ imputed by 0 concatenated with mask)
 can achieve the Bayes rate.

Rationale: The MLP produces a prediction function piecewise affine. Since the Bayes predictor is linear per pattern, MLP good candidate.

We show that there exists a configuration of the parameters of the MLP so that the resulting predictor is the Bayes predictor.

Number of parameters: $(d+1)2^{d+1} + 1$.

 \Rightarrow Provides a natural way to reduce the model capacity by reducing the number of hidden units. (Trading off estimation and approximation error)

The Bayes predictor is linear per pattern (Gaussian+ M(C)AR) $f^{*}(X_{obs}, M) = \beta_{0}^{*} + \langle \beta_{obs}^{*}, X_{obs} \rangle + \langle \beta_{mis}^{*}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$

Order- ℓ approx of $(\sum_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

Order- ℓ approx of the Bayes predictor in MAR

 $f_{\ell}^{\star}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \sum_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$

Order- ℓ approx of $(\Sigma_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

Proposition (Risk of the Order- ℓ approx)

Let ν be the smallest eigenvalue of Σ . Assume linear model with Gaussian covariates, M(C)AR, and that the spectral radius of Σ is < 1. Then, for all $\ell \geq 1$,

$$\mathbb{E}\Big[\big(f_{\ell}^{*}(X_{obs},M) - f^{*}(X_{obs},M)\big)^{2}\Big] \leq \frac{(1-\nu)^{2\ell} \|\beta^{*}\|_{2}^{2}}{\nu} \mathbb{E}\Big[\big\|Id - S^{(0)}_{obs(M)} \Sigma_{obs(M)}\big\|_{2}^{2}\Big]$$

The error of the order- ℓ approximation decays exponentially fast with ℓ .

Order- ℓ approx of the Bayes predictor in MAR

$$f_{\ell}^{\star}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \Sigma_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$$

Order- ℓ approx of $(\sum_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

\Rightarrow Neural network architecture to approximate the Bayes predictor

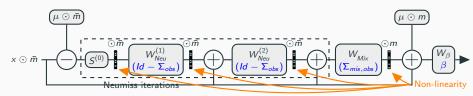


Figure 1: Depth of 3, $\bar{m} = 1 - m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

Order- ℓ approx of the Bayes predictor in MAR

$$f_{\ell}^{\star}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \sum_{mis, obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$$

Order- ℓ approx of $(\sum_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

\Rightarrow Neural network architecture to approximate the Bayes predictor

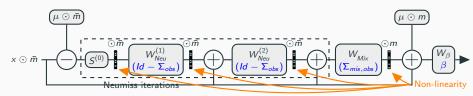
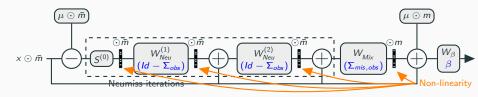


Figure 1: Depth of 3, $\bar{m} = 1 - m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

Networks with missing values: $\odot M$ nonlinearity

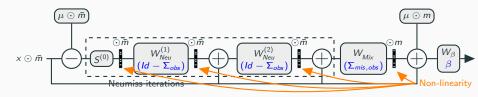


• Implementing a network with the matrix weights $W^{(k)} = (I - \Sigma_{obs(m)})$ masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector. Let v a vector, $\overline{m} = 1 - m$. $(W \odot \overline{m} \overline{m}^{\top})v = (W(v \odot \overline{m})) \odot \overline{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Networks with missing values: $\odot M$ nonlinearity



• Implementing a network with the matrix weights $W^{(k)} = (I - \Sigma_{obs(m)})$ masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector. Let v a vector, $\overline{m} = 1 - m$. $(W \odot \overline{m} \overline{m}^{\top})v = (W(v \odot \overline{m})) \odot \overline{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Proposition (equivalence MLP - depth-0 Neumiss network) A MLP with ReLU activations, one hidden layer of d hidden units, and which operates on the $[X \odot (1 - M), M]$, the input X imputed by 0 concatenated with the mask M, is equivalent to the 0-depth NN

Experiments for linear regression with missing values

- $Y = X\beta^* + \varepsilon$, ε chosen such as SNR = 10.
- $X \sim \mathcal{N}(\mu, \Sigma)$
- $\Sigma = UU^{\top} + \operatorname{diag}(\epsilon'), \ U \in \mathbb{R}^{d \times \frac{d}{2}}, \ U_i j \sim \mathcal{N}(0, 1) \ \epsilon' \sim \mathcal{U}(10^{-2}, 10^{-1})$
- 50% of MCAR, MAR, Probit self-masking.
- Max Likelihood: to estimate the parameters of the joint Gaussian distribution (X₁, ..., X_d, Y) with EM. Predict by conditional expectation of Y given X_{obs}.
- ICE + LR: conditional imputation with an iterative imputer followed by linear regression.
- MLP: take as input the data imputed by 0 concatenated with the mask [X ⊙ (1 − M), M] with ReLU nonlinearity,
 - MLP-Wide: one hidden layer with width increased (between d & 2^d)
 - MLP-Deep: 1 to 10 hidden layers of d hidden units
- Neumiss: The Neumiss architecture with the ⊙*M*, choosing the depth on a validation set.

Results

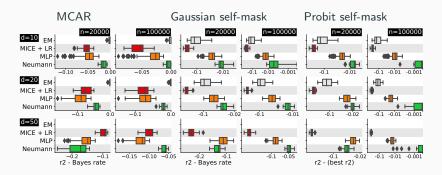


Figure 2: Predictive performances in various scenarios — varying missing-value mechanisms, number of samples *n*, and number of features *d*.

 \Rightarrow Best performances for MNAR scenario (50% of NA on all variables)

• More effective to increase the capacity of the Neumiss network (depth) than to increase the capacity (width) of MLP Wide.

Discussion - challenges

Supervised learning different from usual inferential probabilistic models. Solutions useful in practice robust to the missing-value mechanisms but needs powerful model.

Powerful learner with missing values

- \bullet Incomplete train and test \rightarrow same imputation model
- Single constant imputation is consistent with a powerful learner
- Tree-based models : Missing Incorporated in Attribute
- To be done: nonasymptotic results, uncertainty, distributional shift: No NA in the test? Proofs in MNAR

Linear regression with missing values

- The Bayes predictor is explicit under Gaussian assumptions/ MAR and gaussian self mask but high-dimensional.
- Approx include MLP which can be consistent and Neumiss Network
- New architecture for network with missing data: $\odot M$ nonlinearity.

Outline

- 1. Introduction
- 2. Inference and Imputation with missing values

Multiple imputation

Expectation Maximization

3. Low rank approximation

PCA with missing values - (Multiple) Imputation with missing values Practice

Low rank estimation with MNAR data

Categorical data/Mixed/Multi-Blocks/MultiLevel

4. Supervised learning with missing values

Random Forests with missing values

Linear regression with missing values

5. Causal Inference with missing values

- Imke Mayer (Postdoc Charité Universittsmedizin Berlin)
- Stefan Wager, Erik Sverdrup (Stanford)
- Tobias Gauss, Jean-Denis Moyer (Assistance Publique Hopitaux de Paris, Traumabase)

Mayer, et al. Doubly robust treatment effect estimation with missing attributes. *Annals of Applied Statistics*, 14(3), 2020

Traumabase

- 30000 patients
- 250 continuous and categorical variables: heterogeneous
- 24 hospitals
- 4000 new patients/ year

Center		Accident	Age	Sex	Weight	Lactactes	BP	Acid Tran.	Y
	Beaujon	fall	54	m	85	NM	180	treated	0
	Pitie	gun	26	m	NR	NA	131	control	1
	Beaujon	moto	63	m	80	3.9	145	treated	1
	Pitie	moto	30	W	NR	Imp	107	control	0
	HEGP	knife	16	m	98	2.5	118	treated	1

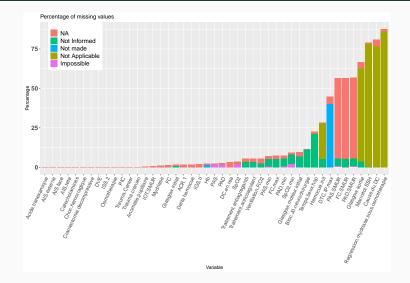
Traumabase

- 30000 patients
- 250 continuous and categorical variables: heterogeneous
- 24 hospitals
- 4000 new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	Acid Tran.	Y
Beaujon	fall	54	m	85	NM	180	treated	0
Pitie	gun	26	m	NR	NA	131	control	1
Beaujon	moto	63	m	80	3.9	145	treated	1
Pitie	moto	30	W	NR	Imp	107	control	0
HEGP	knife	16	m	98	2.5	118	treated	1

⇒ Estimate causal effect: Administration of the treatment "tranexamic acid" (within 3 hours after the accident) on the outcome mortality for traumatic brain injury patients.

Missing values

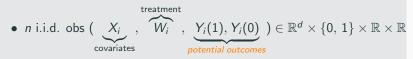


Different types of missing values

Multilevel data/ data integration: Systematic missing variable in one hospital

Potential Outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect for a binary treatment



• Individual causal effect of the treatment: $\Delta_i \triangleq Y_i(1) - Y_i(0)$

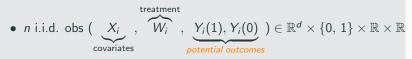
Missing problem: Δ_i never observed (only observe one outcome/indiv)

C	ovariate	es	Treatment Outcome(s)				Cov.		
X_1	X_2	X_3	W	Y(0)	Y(1)		X_1	X_2	
1.1	20	F	1	?	200	1	1.1	20	
-6	45	F	0	10	?		-6	45	
0	15	Μ	1	?	150		0	15	
-2	52	Μ	0	100	?		-2	52	

	Cov.		Treat.	Out.
X_1	X_2	X_3	W	Y
1.1	20	F	1	200
-6	45	F	0	10
0	15	М	1	150
-2	52	М	0	100

Potential Outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect for a binary treatment



• Individual causal effect of the treatment: $\Delta_i \triangleq Y_i(1) - Y_i(0)$

Missing problem: Δ_i never observed (only observe one outcome/indiv)

	С	ovariate	es	Treatment	Outco	ome(s)]		Cov.		Treat.	Out.
>	ζ_1	X_2	X_3	W	Y(0)	Y(1)		X_1	X_2	X_3	W	Y
1	.1	20	F	1	?	200	1	1.1	20	F	1	200
-	6	45	F	0	10	?		-6	45	F	0	10
(0	15	М	1	?	150		0	15	М	1	150
-	2	52	М	0	100	?		-2	52	М	0	100

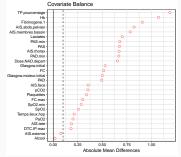
Average Treatment Effect (ATE): $\tau = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1) - Y_i(0)]$ The ATE is the difference of the average outcome had everyone gotten treated and the average outcome had nobody gotten treatment

Observational data: non random assignment

	survived	deceased	Pr(survived treatment)	<pre>Pr(deceased treatment)</pre>
TA not administered	6,238 (76%)	1,327 (16%)	0.82	0.18
TA administered	367 (4%)	316 (4%)	0.54	0.46

Mortality rate 20% - for treated 46% - not treated 18%: treatment kills?

Standardized mean differences between treated and control.



Severe patients (with higher risk of death) are more likely to be treated. If control group does not look like treatment group, difference in response may be **confounded** by differences between the groups.

Assumption for ATE identifiability in observational data

Unconfoundedness - selection on observables

$$[Y_i(0), Y_i(1)] \perp W_i \mid X_i$$

Treatment assignment W_i is random conditionally on covariates X_i Measure enough covariates to capture dependence between W_i and outcomes

Overlap

Propensity score: probability of treatment given observed covariates.

$$e(x) \triangleq \mathbb{P}(W_i = 1 | X_i = x) \quad \forall x \in \mathcal{X}.$$

We assume overlap, i.e. $\eta < e(x) < 1 - \eta$, $\forall x \in \mathcal{X}$ and some $\eta > 0$

ATE not identifiable without assumptions: it is not a sample size problem.

Assumption for ATE identifiability in observational data

Unconfoundedness - selection on observables

 $\{Y_i(0), Y_i(1)\} \perp W_i \mid X_i$

Treatment assignment W_i is random conditionally on covariates X_i Measure enough covariates to capture dependence between W_i and outcomes

Overlap

Left: Non smoker and never treated Right: Smokers and all treated If proba to be treated when smoker e(x) = 1, how to estimate the outcome for smokers when not treated Y(0)? How to extrapolate if total confusion?

Regression adjustment: g-estimator

$$\mu_{(w)}(x) \triangleq \mathbb{E}[Y(w)|X = x]$$
OLS model $w \in \{0, 1\}$

$$Y_i(w) = c_{(w)} + X_i\beta_{(w)} + \varepsilon_i(w)$$

$$V_i(x) = c_{(w)} + X_i\beta_{(w)} + \varepsilon_i(w)$$

Identifiability (using $\{Y_i(0), Y_i(1)\} \perp W_i \mid X_i$)

$$au = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1) - Y_i(0)]$$

$$= \mathbb{E}[\mathbb{E}[Y_i(1) - Y_i(0)|X_i]] = \mathbb{E}[\mu_{(1)}(X_i) - \mu_{(0)}(X_i)]$$

 $= \mathbb{E}[\mathbb{E}[Y_{i}(1)|W_{i} = 1, X_{i} = x] - \mathbb{E}[Y_{i}(0)|W_{i} = 0, |X_{i} = x]](\text{uncounfoud})$

 $= \mathbb{E}[\mathbb{E}[Y_i|W_i = 1, X_i] - \mathbb{E}[Y_i|W_i = 0, X_i]] (\text{consistency})$

 $\mathbb{E}[Y_i|W_i = 1, X_i] \text{ can be estimated from data but } \mathbb{E}[Y_i(1)|X_i] \text{ not.}$ $\hat{\tau}_{OLS} = \frac{1}{n} \sum_{i=1}^n \left(\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i) \right) = \frac{1}{n} \sum_{i=1}^n (\hat{c}_{(1)} + X_i \hat{\beta}_{(1)}) - (\hat{c}_{(0)} + X_i \hat{\beta}_{(0)})$

 \Rightarrow Consistent if $\hat{\mu}_{(w)}$ consistent

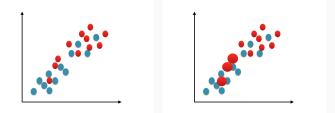
Inverse-propensity weighting estimator

Average treatment effect (ATE): $\tau \triangleq \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1) - Y_i(0)]$ Propensity score (proba treated|covariates): $e(x) \triangleq \mathbb{P}(W_i = 1 | X_i = x)$

IPW estimator (Horvitz-Thomson, survey)

$$\hat{\tau}_{IPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{W_i Y_i}{\hat{e}(X_i)} - \frac{(1-W_i) Y_i}{1-\hat{e}(X_i)} \right)$$

- \Rightarrow Balance the differences between the two groups
- \Rightarrow Consistent estimator of τ when $\hat{e}(\cdot)$ consistent (logistic regression).
- \Rightarrow High variance (divide by probability)



Doubly robust estimator

Define
$$\mu_{(w)}(x) riangleq \mathbb{E}[Y_i(w) \,|\, X_i = x]$$
 and $e(x) riangleq \mathbb{P}(W_i = 1 \,|\, X_i = x)$.

Augmented IPW - Double Robust (DR)

$$\hat{\tau}_{AIPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mu}_{(1)}(X_i) - \hat{\mu}_{(0)}(X_i) + W_i \frac{Y_i - \hat{\mu}_{(1)}(X_i)}{\hat{e}(X_i)} - (1 - W_i) \frac{Y_i - \hat{\mu}_{(0)}(X_i)}{1 - \hat{e}(X_i)} \right)$$

is consistent if either the $\hat{\mu}_{(w)}(x)$ are consistent or $\hat{e}(x)$ is consistent.

•
$$\hat{\tau}_{IPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{W_i Y_i}{\hat{e}(X_i)} - \frac{(1-W_i)Y_i}{1-\hat{e}(X_i)} \right)$$
: Treatment assignment ~ covariates

•
$$\hat{\tau}_{OLS} \triangleq \frac{1}{n} \sum_{i=1}^{n} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$
: Outcome ~ covariates

 \Rightarrow Both sensitive to misspecification. DR: combine ols + ipw of residuals

Doubly robust estimator

w

Define
$$\mu_{(w)}(x) riangleq \mathbb{E}[Y_i(w) \,|\, X_i = x]$$
 and $e(x) riangleq \mathbb{P}(W_i = 1 \,|\, X_i = x)$.

Augmented IPW - Double Robust (DR)

$$\hat{\tau}_{AIPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mu}_{(1)}(X_i) - \hat{\mu}_{(0)}(X_i) + W_i \frac{Y_i - \hat{\mu}_{(1)}(X_i)}{\hat{e}(X_i)} - (1 - W_i) \frac{Y_i - \hat{\mu}_{(0)}(X_i)}{1 - \hat{e}(X_i)} \right)$$

is consistent if either the $\hat{\mu}_{(w)}(x)$ are consistent or $\hat{e}(x)$ is consistent.

•
$$\hat{\tau}_{IPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{W_i Y_i}{\hat{\epsilon}(X_i)} - \frac{(1-W_i)Y_i}{1-\hat{\epsilon}(X_i)} \right)$$
: Treatment assignment ~ covariates

•
$$\hat{\tau}_{OLS} \triangleq \frac{1}{n} \sum_{i=1}^{n} (\hat{\mu}_1(X_i) - \hat{\mu}_0(X_i))$$
: Outcome ~ covariates

 \Rightarrow Both sensitive to misspecification. DR: combine ols + ipw of residuals

Rationale: makes group similar before extrapolation

$$\sum_{i:W_i=1} (\widetilde{\mu}_{(0)}(X_i) - \mu_{(0)}(X_i)) = \underbrace{(\overline{X}_1 - \widehat{\gamma}^T \overline{X}_0)}_{\text{covariate balancing}} \underbrace{(\widehat{\beta}^{(0)} - \beta^{(0)})}_{\text{extrapolation}} + \text{ noise term}$$

here $\widehat{\gamma} = (1 - \widehat{e}(X_i))^{-1}$

Doubly robust ATE estimation

Model Treatment on Covariates $e(x) \triangleq \mathbb{P}(W_i = 1 | X_i = x)$ Model Outcome on Covariates $\mu_{(w)}(x) \triangleq \mathbb{E}[Y_i(w) | X_i = x]$

Augmented IPW - Double Robust (DR)

$$\hat{\tau}_{AIPW} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\mu}_{(1)}(X_i) - \hat{\mu}_{(0)}(X_i) + W_i \frac{Y_i - \hat{\mu}_{(1)}(X_i)}{\hat{e}(X_i)} - (1 - W_i) \frac{Y_i - \hat{\mu}_{(0)}(X_i)}{1 - \hat{e}(X_i)} \right)$$

is consistent if either the $\hat{\mu}_{(w)}(x)$ are consistent or $\hat{e}(x)$ is consistent.

Possibility to use **any (machine learning) procedure** such as **random forests**, deep nets, etc. to estimate $\hat{e}(x)$ and $\hat{\mu}_{(w)}(x)$ without harming the interpretability of the causal effect estimation.

Properties - **Double Machine Learning (chernozhukov, et al. 2018)** If $\hat{e}(x)$ and $\hat{\mu}_{(w)}(x)$ converge at the rate $n^{1/4}$ then $\sqrt{n}(\hat{\tau}_{DR} - \tau) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, V^*)$, V^* semiparametric efficient variance.

Causal inference with missing attributes?

Missing (informative) values in the covariates

Straightforward - but often biased - solution is complete-case

[С	ovariat	es	Treatment	Outcome(s)		
	X_1^*	X_2^*	X_3^*	W	Y(0)	Y(1)	
	NA	20	F	1	?	Survived	
	-6	45	NA	0	Dead	?	
	0	NA	Μ	1	?	Survived	
	NA	32	F	1	?	Dead	
	1	63	Μ	1	Dead	?	
	-2	NA	М	0	Survived	?	

 \rightarrow Often not a good idea! What are the alternatives?

Three families of methods - different assumptions

- Classical unconfoundedness + classical missing values mechanisms
- Unconfoundedness with missingness + (no) missing values mechanisms Mayer, J., Wager, Sverdrup, Moyer, Gauss. AOAS 2020.
- Latent unconfoundedness + classical missing values mechanisms Mayer, J., Raimundo, Vert. 2020.

Under 1: Multiple Imputation

Consistency of IPW with missing values (Seaman, White 2014)

Assume **Missing At Random (MAR)** mechanism. Multiple imputation (MICE using (X^*, W, Y)) with IPW on each imputed data is consistent when Gaussian covariates and logistic/linear treatment/oucome model

X*1	X ₂ *	X*3	 W	Y
NA	20	10	 1	survived
-6	45	NA	 1	survived
0	NA	30	 0	died
NA	32	35	 0	survived
-2	NA	12	 0	died
1	63	40	 1	survived

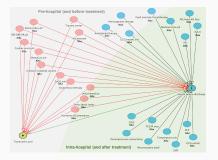
1) Generate M plausible values for each missing value

X1	X2	X3	 W	Y	<i>x</i> ₁	X2	X3	 W	Y	<i>x</i> ₁	<i>x</i> ₂	X3	 W	Y
3	20	10	 1	s	-7	20	10	 1	s	7	20	10	 1	s
-6	45	6	 1	s	-6	45	9	 1	s	-6	45	12	 1	s
0	4	30	 0	d	0	12	30	 0	d	0	-5	30	 0	d
-4	32	35	 0	s	13	32	35	 0	s	2	32	35	 0	s
-2										-2				
1	63	40	 1	s	1	63	40	 1	s	1	63	40	 1	s

- 2) Estimate ATE on each imputed data set: $\hat{\tau}_m$, $\widehat{Var}(\hat{\tau}_m)$
- 3) Combine the results (Rubin's rules): $\hat{\tau} = \frac{1}{M} \sum_{m=1}^{M} \hat{\tau}_m$ $\widehat{Var}(\hat{\tau}) = \frac{1}{M} \sum_{m=1}^{M} \widehat{Var}(\hat{\tau}_m) + (1 + \frac{1}{M}) \frac{1}{M-1} \sum_{m=1}^{M} (\hat{\tau}_m - \hat{\tau})^2$

15

2. Unconfoundedness with missing + (no) missing hypothesis



0	ovariat	es	Treatment	Outco	ome(s)
X_1^*	$X_1^* X_2^* X_3^*$		W	Y(0)	Y(1)
NA	20	F	1	?	200
-6	45	NA	0	10	?
0	NA	М	1	?	150
NA	32	F	1	?	100
1	63	М	1	15	?
-2	NA	М	0	20	?

Unconfoundedness: $\{Y_i(1), Y_i(0)\} \perp W_i \mid X$ not testable from the data. \Rightarrow Doctors give us the DAG (covariates relevant for either treatment decision and for predicting the outcome)

Unconfoundedness with missing values: $\{Y_i(1), Y_i(0)\} \perp W_i \mid X^*$ $X^* \triangleq (1 - M) \odot X + M \odot NA$; with $M_{ij} = 1$ if X_{ij} is missing, 0 otherwise.

 \Rightarrow Doctors decide to treat a patient based on what they observe/record. We have access to the same information as the doctors.

Under 2: Double Robust with missing values

AIPW with missing values

$$\hat{\tau}^* \triangleq \frac{1}{n} \sum_i \left(\widehat{\mu_{(1)}^*}(X_i) - \widehat{\mu_{(0)}^*}(X_i) + W_i \frac{Y_i - \widehat{\mu_{(1)}^*}(X_i)}{\widehat{e^*}(X_i)} - (1 - W_i) \frac{Y_i - \widehat{\mu_{(0)}^*}(X_i)}{1 - \widehat{e^*}(X_i)} \right)$$

Generalized propensity score (Rosenbaum, Rubin JASA 1984)

$$e^*(x^*) \triangleq \mathbb{P}(W = 1 \mid X^* = x^*)$$

One model per pattern: $\sum_{m \in \{0,1\}^d} \mathbb{E} \left[W | X_{obs(m)}, M = m \right] \mathbb{1}_{M=m}$

- \Rightarrow Supervised learning with missing values. $^{1\ 2\ 3}$
- Mean imputation is consistent with a universally consistent learner.
- Missing Incorporate in Attributes (MIA) for trees methods.

¹Consistency of supervised learning with missing values J., Prost, Scornet, Varoquaux. 2020 ²Neumiss networks: differential programming for supervised learning with missing values. Le Morvan, J. et al. *Neurips2020*

³What's a good imputation to predict with missing values? Le Morvan, J. et al. *Neurips 2021*

Under 2: Double Robust with missing values

AIPW with missing values

$$\hat{\tau}^* \triangleq \frac{1}{n} \sum_{i} \left(\widehat{\mu_{(1)}^*}(X_i) - \widehat{\mu_{(0)}^*}(X_i) + W_i \frac{Y_i - \widehat{\mu_{(1)}^*}(X_i)}{\widehat{e^*}(X_i)} - (1 - W_i) \frac{Y_i - \widehat{\mu_{(0)}^*}(X_i)}{1 - \widehat{e^*}(X_i)} \right)$$

Generalized propensity score (Rosenbaum, Rubin JASA 1984)

$$e^*(x^*) \triangleq \mathbb{P}(W = 1 \mid X^* = x^*)$$

One model per pattern: $\sum_{m \in \{0,1\}^d} \mathbb{E} \left[W | X_{obs(m)}, M = m \right] \mathbb{1}_{M=m}$

- \Rightarrow Supervised learning with missing values.
- Mean imputation is consistent with a universally consistent learner.
- Missing Incorporate in Attributes (MIA) for trees methods.

Implemented in grf package: combine two non-parametrics models, forests (conditional outcome and treatment assignment) adapted to **any** missing values with MIA.

 $\hat{\tau}_{AIPW^*}$ is \sqrt{n} -consistent, asymptotically normal given the product of RMSE of the nuisance estimates decay as $o(n^{-1/2})$ Mayer, J. et al. AOAS 2020

Methods to do causal inference with missing values

	Covaria	tes	Missin	igness	Und	confounded	ness	Models for (W, Y)	
	multiva- riate normal	general	M(C)AR	general	Missing	Latent	Classical	logistic- linear	non- param.
1. (SA)EM ⁴	1	X	1	×	1	×	X	1	×
1. Mean.GRF	1	1	1	(✓)	1	×	X	1	1
1. MIA.GRF	~	~	1	(✓)	✓	×	X	\checkmark	~
2. Mult. Imp.	1	1	1	×	(X)	×	1	~	(X)
3. MatrixFact.	~	×	1	X	×	1	X	~	(X)
3. MissDeep- Causal	1	1	1	X	X	1	×	1	1

Methods & assumptions on data generating process: models for covariates, missing values mechanism, identifiability conditions, models for treatment/outcome.

- \checkmark : can be handled \checkmark : not applicable in theory
- (\checkmark): empirical results and ongoing work on theoretical guarantees
- (\mathbf{X}) : no theoretical guarantees but heuristics.

⁴Use of EM algorithms for logistic regression with missing values. Jiang, et al. 2019 ²²

Simulations: no overall best performing method.

- 10 covariates generated with Gaussian mixture model $X_i \sim \mathcal{N}_d(\mu_{(c_i)}, \Sigma_{(c_i)})|C_i = c_i$, C from a multinomial distribution with three categories.
- Unconfoundedness on complete/observed covariates, 30% NA
- Logistic-linear for (W, Y), $logit(e(X_i)) = \alpha^T X_{i}, Y_i \sim \mathcal{N}(\beta^T X_{i} + \tau W_i, \sigma^2)$

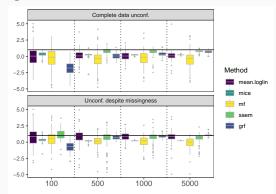


Figure 1: Estimated with AIPW and true ATE $\tau = 1$

- ightarrow grf-MIA is asymptotically unbiased under unconfoundedness despite missingness.
- \rightarrow Multiple imputation requires many imputations to remove bias.

Simulations: importance of unconfoundedness assumption and choice of estimator

Setup

- Different data generating models (linear, nonlinear, latent, etc.)
- Different missingness mechanisms

Results

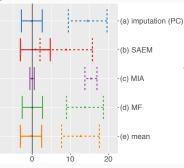
- AIPW estimators outperform their IPW counterparts.
- For $\hat{\tau}_{mia}$, the unconfoundedness despite missingness is indeed necessary.
- $\hat{\tau}_{\textit{mia}}$ unbiased for all missingness mechanisms, especially for MNAR.
- Multiple imputation (mice) only requires standard unconfoundedness, but needs MAR

Results for Trauma Brain Injuries (TBI)

40 covariates, 18 confounders. 8,248 patients.

Overlap: cannot be tested but high level of uncertainty at diagnosing severe (internal bleeding) makes it likely Many MNAR missing values

ATE estimations (×100): effect of tranexamic acid on in-ICU mortality



(y-axis: estimation approach, solid: Double Robust AIPW, dotted: IPW), (x-axis: ATE estimation with bootstrap CI)

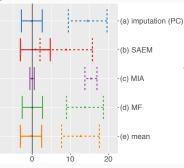
The obtained value corresponds to the difference in percentage points between mortality rates in treatment and control.

Results for Trauma Brain Injuries (TBI)

40 covariates, 18 confounders. 8,248 patients.

Overlap: cannot be tested but high level of uncertainty at diagnosing severe (internal bleeding) makes it likely Many MNAR missing values

ATE estimations (×100): effect of tranexamic acid on in-ICU mortality



(y-axis: estimation approach, solid: **Double Robust AIPW**, dotted: **IPW**), (x-axis: ATE estimation with bootstrap CI)

Comparison with CRASH-3 study same conclusion of "no average treatment effect".

Take-away messages

- Missing attributes alter causal analyses.
- Additional assumptions on appropriate unconfoundedness.
- New proposals to handle missing values in causal inference.
- Prefer AIPW to IPW estimators, in theory and in practice.
- \bullet Heterogeneous treatment effects with missing values (causal forest) implemented in the grf R package

Ongoing work

• Causal survival analysis, Policy learning (with missing values)

 \bullet Combine RCT and observational data to generalize the ATE to a (broader) target population $^{5\ 6}$

	Set	S	X_1	X2	X_3	W	Y
1	\mathcal{R}	1	1.1	20	NA	1	24.1
	\mathcal{R}	1					
n - 1	\mathcal{R}	1	-6	45	8.3	0	26.3
п	\mathcal{R}	1	0	15	6.2	1	23.5
n + 1	O	?	-2	NA	7.1	NA	NA
n + 2	O	?	-1	NA	2.4	NA	NA
	O	?				NA	NA
n + m	O	?	-2	NA	3.4	NA	NA

Data with observed treatment W and outcome Y only in the RCT.

CRASH3

- Multi-centric RCT over 29 counties
- No effect of TXA with difference in means (-0.3 with [95% CI -0.8 0.2])

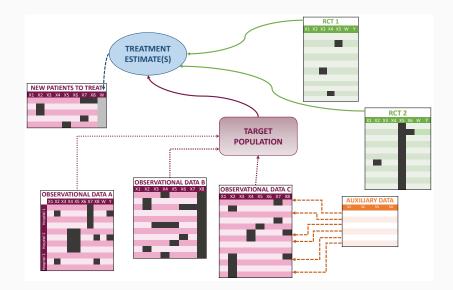
Traumabase

- Representative sample
- 8200 patients with TBI

ATE = -0.035, 95% CI [-0.38 0.28] when generalizing with g-estimator. Treatment effect modifiers "time to treatment" is missing in Traumabase

⁶Mayer, J. et al. Transporting treatment effects with missing attributes (2021) *Submitted*

⁵Colnet, J. et al. (2021). Causal inference methods for combining RCT and observational studies: a review. *In revision in Statistical Science* - Causal effect on a target population: a sensitivity analysis to handle missing covariates. *Submitted*



Missing value website

More information and details on missing values: **R-miss-tastic** platform. Mayer, J. et al., 2019

→ Theoretical and practical tutorials, popular datasets, bibliography, workflows (in R and in python), active contributors/researchers in the community, etc.

rmisstastic.netlify.com

Interested in contribute to our platform? Feel free to contact us!

MERCI

Challenges:

- SGD with missing values for linear regression and MCAR ⁵⁶. Difficult to extend to logistic or MAR.
 - Naively impute the missing values, get \tilde{X} ,
 - Adapt algorithm to account for the error & apply this debiased version to the complete dataset X̃.

Naive imputation + debiasing also used for Lasso ⁵⁷

Current works

- Times series with missing values for classification
- Model-based Clustering with Missing Not At Random Data
- **MNAR missing values** CV with MNAR data? Contribution of causality for missing data

Mohan, Pearl. 2021. Graphical Models for Processing Missing Data. JASA.

Sportisse, Boyer, J. Estimation and imputation in Probabilistic Principal Component

Analysis with Missing Not At Random data. Neurips2020.

• <u>Multiple types of missing values in a same data set</u> ⁵⁶Sportisse, Boyer, Dieuleveut, J. Debiasing Stochastic Gradient Descent to handle missing values.

<u>**R-miss-tastic**</u> https://rmisstastic.netlify.com/R-miss-tastic

J., I. Mayer, N. Tierney & N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee) $^{58}\,$

Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
- \Rightarrow Federate the community

 $\Rightarrow \mathsf{Contribute!}$

⁵⁸https://www.r-consortium.org/projects/call-for-proposals

Examples:

- Lecture ⁵⁹ General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- Lecture Multiple Imputation: mice by Nicole Erler ⁶⁰
- Longitudinal data, Time Series Imputation (<u>Steffen Moritz</u> very active contributor of r-miss-tastic), Principal Component Methods⁶¹

⁶⁰https://rmisstastic.netlify.com/tutorials/erler_course_

multipleimputation_2018/erler_practical_mice_2018

⁵⁹https://rmisstastic.netlify.com/lectures/

⁶¹https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf

Thank you

