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Introduction



Collaborators

• PhD students : G. Robin, W. Jiang, I. Mayer, N. Prost, (X)

• Colleagues : J-P Nadal (EHESS), E. Scornet (X), G. Varoquaux (INRIA),

S. Wager (Stanford), B. Naras (Stanford)

• Traumabase (hospital) : T. Gauss, S. Hamada, J-D Moyer

• Capgemini
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Traumabase

15000 patients, 250 variables, 11 hospitals from 2011 (4000 new patients/ year)

Center Accident Age Sex Weight Height BMI BP SBP

Beaujon Fall 54 m 85 NR NR 180 110

Pitie Salpetriere Gun 26 m NR NR NR 131 62

Beaujon AVP moto 63 m 80 1.8 24.69 145 89

Pitie Salpetriere AVP pedestrian 30 w NR NR NR 107 66

HEGP White weapon 16 m 98 1.92 26.58 118 54

...................

SpO2 Temperature Lactates Hb Glasgow Transfusion ...........

97 35.6 <NA> 12.7 12 yes

100 36 3.9 11.4 3 no

100 36 NM 14.4 15 no

100 36.6 NM 14.3 15 yes

⇒ Estimate causal effect : administration of the (treatment)

”tranexamic acid” (within the first 3 hours after the accident) on

mortality (outcome) for traumatic brain injury patients.
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Traumabase

15000 patients, 250 variables, 11 hospitals from 2011 (4000 new patients/ year)

Center Accident Age Sex Weight Height BMI BP SBP

Beaujon Fall 54 m 85 NR NR 180 110

Pitie Salpetriere Gun 26 m NR NR NR 131 62

Beaujon AVP moto 63 m 80 1.8 24.69 145 89

Pitie Salpetriere AVP pedestrian 30 w NR NR NR 107 66
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...................

SpO2 Temperature Lactates Hb Glasgow Transfusion ...........

97 35.6 <NA> 12.7 12 yes

100 36 3.9 11.4 3 no

100 36 NM 14.4 15 no

100 36.6 NM 14.3 15 yes

⇒ Predict whether to start a blood transfusion, the risk of hemorrhagic

shock, etc...

⇒ (Logistic) regressions with missing categorical/continuous values
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Missing values
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Handling missing values

(inferential framework)



Solutions to handle missing values

Litterature : Schaefer (2002) ; Little & Rubin (2002) ; Gelman & Meng (2004) ; Kim & Shao

(2013) ; Carpenter & Kenward (2013) ; van Buuren (2015)

Modify the estimation process to deal with missing values

Maximum likelihood : EM algorithm to obtain point estimates +

Supplemented EM (Meng & Rubin, 1991) / Louis for their variability

Ex logistic regression : EM + Louis to get β̂, V̂ (β̂)

Difficult to establish ? Not many software even for simple models

One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set

on which you can perform any statistical method (Rubin, 1976)

Ex logistic regression : impute and apply logistic model to get β̂, V̂ (β̂)

Aim : estimate parameters and their variance from an incomplete data.

Inferential framework
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Dealing with missing values

⇒ Imputation to get a complete data set
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Dealing with missing values
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Imputation methods

• Impute by regression take into account the relationship : estimate β -

impute ŷi = β̂0 + β̂1xi ⇒ variance underestimated and correlation

overestimated.

• Impute by stochastic reg : estimate β and σ - impute from the predictive

yi ∼ N
(
xi β̂, σ̂

2
)
⇒ preserve distribution
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Imputation methods

Assuming a joint model

• Gaussian distribution : xi. ∼ N (µ,Σ) (package Amelia)

• low rank : Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank k

(package softimpute, Hastie; missMDA, Josse)

• latent class - nonparametric Bayesian (package dpmpm, Reiter)

• deep learning using variational autoencoders (MIWAE, Mattei, 2018)

Using conditional models (joint implicitly defined)

• with logistic, multinomial, poisson regressions (mice, Van Buuren)

• iterative impute each variable by random forests (missForest, Buhlmann)

Imputation for categorical, mixed, multilevel/blocks data, etc.

⇒ R-miss-tastic missing values plateform

Aim is not to impute but estimate parameters & variance (multiple imputation)

9
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Logistic regression with missing covariates : parameter estima-

tion, model selection and prediction. (Jiang, J., Lavielle, Gauss, Hamada, 2018)

x = (xij) a n × d matrix of quantitative covariates

y = (yi ) an n-vector of binary responses {0, 1}
Logistic regression model

P (yi = 1|xi ;β) =
exp(β0 +

∑d
j=1 βjxij)

1 + exp(β0 +
∑d

j=1 βjxij)

Covariables

xi ∼
i.i.d.
Nd(µ,Σ)

Log-likelihood for complete-data with θ = (µ,Σ, β)

LL(θ; x , y) =
n∑

i=1

(
log(p(yi |xi ;β)) + log(p(xi ;µ,Σ))

)
.

Decomposition : x = (xobs, xmis)

Under MAR, possibility to ignore the missing value mechanism

Observed likelihood arg maxLL(θ; xobs, y) =
∫
LL(θ; x , y)dxmis

10



Stochastic Approximation EM

• E-step : Evaluate the quantity

Qk(θ) = E[LL(θ; x , y)|xobs, y ; θk−1]

=

∫
LL(θ; x , y)p(xmis|xobs, y ; θk−1)dxmis

• M-step : θk = arg maxθ Qk(θ)

⇒ Unfeasible computation of expectation

MCEM (Wei & Tanner, 1990) : generate samples of missing data from

p(xmis|xobs, y ; θk−1) and replaces the expectation by an empirical mean.

⇒ Require a huge number of samples

SAEM (Lavielle, 2014) almost sure convergence to MLE. (Metropolis

Hasting - Variance estimation with Louis).

Unbiased estimates : β̂1, . . . , β̂d - V̂ (β̂1), . . . , V̂ (β̂d) - good coverage

11



Supervised learning with missing

values



Supervised learning

• A feature matrix X and a response vector Y

• Find a prediction function that minimizes the expected risk.

Bayes rule : f ? ∈ arg min
f :X→Y

E [`(f (X),Y )] f ?(X) = E[Y |X]

• Empirical risk minimization :

f̂Dn,train ∈ arg min
f :X→Y

(
1

n

n∑
i=1

` (f (Xi ),Yi )

)
A new data Dn,test to estimate the generalization error rate

• Bayes consistent : E[`(f̂n(X),Y )] −−−→
n→∞

E[`(f ?(X),Y )]

Differences with classical litterature

• response variable Y - Aim : Prediction

• two data sets (out of sample) with missing values : train & test sets

⇒ Is it possible to use previous approaches (EM - impute), consistent ?

⇒ Do we need to design new ones ?

12
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EM and out-of sample prediction

P (yi = 1|xi ;β) =
exp(

∑d
j=1 βjxij )

1+exp(
∑d

j=1 βjxij )
After EM θ̂n = (β̂1, β̂2, β̂3, . . . , β̂d , µ̂, Σ̂)

New obs : xn+1 = (x(n+1)1,NA,NA, x(n+1)4, . . . , x(n+1)d)

Predict Y on a test set with missing entries xtest = (xobs , xmiss)

ŷ = arg max
y

pθ̂(y |xobs)

= arg max
y

∫
pθ̂(y |x)pθ̂(xmis|xobs)dxmis

= arg max
y

EpXm|Xo=xo
pθ̂n(y |Xm, xo) ≈ arg max

y

M∑
m=1

pθ̂n

(
y |xobs, x (m)

mis

)
.

Logistic regression

? ?
?

?
? ?

?

p̂1 p̂M
p̂ = 1

M

∑M
m=1 p̂

m
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Prediction on test incomplete data with a full data model

• Let a Bayes-consistent predictor f for complete data : f (X) = E[Y |X]

• Note the data : X̃ = X� (1−M) + NA�M (takes value in R ∪ {NA})

• Perform multiple imputation :

f ?mult imput(x̃) = EXm|Xo=xo [f (Xm, xo)]

same as out-of sample EM but assuming know f

Theorem

Consider the regression model Y = f (X) + ε, where

• we assume MAR ∀S ⊂ {1, . . . , d}, (Mj)j∈S |= (Xj)j∈S | (Xk)k∈Sc

• ε |= (M1,X1, . . . ,Md ,Xd) is a centred noise

Then multiple imputation is consistent :

f ?mult imput(x̃) = E[Y |X̃ = x̃]

14



Proof

Let x̃ ∈ (R ∪ NA)d . Without loss of generality, assume only x̃1, . . . , x̃j are

NA.

f ?mult imput(x̃) = EXm|Xo=xo [f (Xm,Xo = xo)]

= E[f (Xm,Xo = xo)|Xo = xo ]

= E[Y |Xo = xo ]

= E[Y |X̃j+1 = x̃j+1, . . . , X̃d = x̃d ]

E[Y |X̃ = x̃] = E[Y |X̃1 = NA, . . . , X̃j = NA, X̃j+1 = x̃j+1, . . . , X̃d = x̃d ]

= E[Y |M1 = 1, . . . ,Mj = 1, X̃j+1 = x̃j+1, . . . , X̃d = x̃d ]

= E[Y |X̃j+1 = x̃j+1, . . . , X̃d = x̃d ]

15



Imputation prior to learning

Impute the train, learn a model with X̂train,Ytrain. Impute the test with

the same imputation and predict with X̂test and f̂train

? ?
?

?
? ?

?

Xtrain Ytrain

? ?
?

?
? ?

?

Xtest

Same imputation îtrain îtrain

X̂train Ytrain X̂test Ŷtest

f̂train

Prediction model 16



Imputation prior to learning

Imputation with the same model

Easy to implement for univariate imputation : the means (µ̂1, ..., µ̂d) of

each colum of the train. Also OK for Gaussian imputation.

Issue : many methods are ”black-boxes” and take as an imput the

incomplete data and output the completed data (mice, missForest)

Separate imputation

Impute train and test separately (with a different model)

Issue : depends on the size of the test set ? one observation ?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned

only on the training imputed data set

Issue : sometimes not the training set

17



Imputation with the same model : mean imputation is consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Framework - assumptions

• Y = f (X) + ε

• X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

• ‖f ‖∞ <∞
• Missing data on X1 with M1 |= X1|X2, . . . ,Xd .

• (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous

• ε is a centered noise independent of (X,M1)

(remains valid when missing values occur for variables X1, . . . , Xj)

18



Imputation with the same model : mean imputation is consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Imputed entry x′ = (x ′1, x2, . . . , xd) : x ′1 = x11M1=0 + E[X1]1M1=1

Theorem

f ?impute(x ′) =E[Y |X2 = x2, . . . ,Xd = xd ,M1 = 1]

1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd ]>0

+ E[Y |X = x′]1x′1=E[X1]1P[M1=1|X2=x2,...,Xd=xd ]=0

+ E[Y |X1 = x1,X2 = x2, . . . ,Xd = xd ,M1 = 0]1x′1 6=E[X1].

Prediction with mean is equal to the Bayes function almost everywhere

f ?impute(x ′) = f̃ ?(X̃) = E[Y |X̃ = x̃]
18



Imputation with the same model : mean imputation is consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Rationale

The learning algorithm learns the imputed value (here the mean) and use

that information to detect that the entry was initially missing. If the

imputed value changes from train to test set the learning algorithm may

fail, since imputed data distribution differs between train and test sets.

⇒ Other values than the mean are possible. Mean not a bad choice for

prediction despite its drawbacks for estimation.

18



Trees - Simulations



End-to-end learning with missing values

Xtrain Ytrain Xtest Ŷtest

p̂

prediction learner

Trees natural for empirical risk minimization with NA : handle half discrete data

19



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children : find the

feature j?, the threshold z? which minimises the (quadratic) loss

(j?, z?) ∈ arg min
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z ]

)2 · 1Xj≤z

+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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CART with missing values : split on available cases

X1 X2

?

?

?

root

X1 ≤ s1 X1 > s1

X2 ≤ s2 X2 > s2

E
[(

Y − E[Y |Xj ≤ z,Mj = 0]
)2 · 1Xj≤z,Mj =0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2 · 1Xj>z,Mj =0

]
.

Propagate observation with missing values ?

Probabilistic splits : Bernouilli( #L
#L+#R ) (C4.5 algorithm)

Block : send all to a side by minimizing the error (xgboost, lightgbm)

Surrogate split : search for a split on another variable that induces a

partition close to the original one (rpart)

Rk : Implicit impute by an interval (missing values assigned to the left or right)

Variable selection bias (not a problem to predict) : conditional trees (Hothorn)
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CART with missing values : split on available cases
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Missing incorporated in attribute, Twala et al 2008

Selection of the variable, threshold and propagation of missing values

f ? ∈ arg min
f∈Pc,miss

E
[(
Y − f (X̃)

)2
]
,

where Pc,miss = Pc,miss,L ∪ Pc,miss,R ∪ Pc,miss,sep with

• Pc,miss,L → {{X̃j ≤ z ∨ X̃j = NA}, {X̃j > z}}
• Pc,miss,R → {{X̃j ≤ z}, {X̃j > z ∨ X̃j = NA}}
• Pc,miss,sep → {{X̃j 6= NA}, {X̃j = NA}}.

⇒ Missing values treated like a category (well to handle R ∪ NA)

⇒ Target E
[
Y
∣∣∣X̃] =

∑
m∈{0,1}d E [Y |o(X,m),M = m] 1M=m

⇒ Good for informative pattern (M explains Y )

⇒ Implementation : duplicate the incomplete columns, and replace the

missing entries once by +∞ and once by −∞.
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Simulations : 20% missing values

Quadratic : Y = X 2
1 + ε, xi. ∈ N (µ,Σ4×4), ρ = 0.5, n = 1000

d̃n =


2 3 NA 0 15

1 NA 3 5 13

9 4 2 NA 18

7 6 NA NA 10



d̃n + mask =


2 3 NA 0 0 0 1 0 15

1 NA 3 5 0 1 0 0 13

9 4 2 NA 0 0 0 1 18

7 6 NA NA 0 0 1 1 10


Imputation (mean, gaussian) + prediction with trees

Imputation (mean, gaussian) + mask+ prediction with trees

Trees MIA
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Simulations : 20% missing values

Quadratic : Y = X 2
1 + ε, xi. ∈ N (µ,Σ4×4), ρ = 0.5, n = 1000

MCAR (MAR) MNAR Predictive

Mi,1 ∼ B(p) Mi,1 = 1Xi,1>[X1](1−p)n
Y = X 2

1 + 3M1 + ε

XGBOOST

RANDOM FOREST

DECISION TREE

−0.2 −0.1 0 +0.1

−0.05 −0.025 0 +0.025

−0.3 −0.2 −0.1 0 +0.1 +0.2
0. MIA

2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian6. rpart (surrogates)

+ mask7. rpart (surrogates)8. ctree (surrogates)

+ mask9. ctree (surrogates)

0. MIA
2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

0. MIA
1. block2. impute mean

+ mask3. impute mean4. impute Gaussian

+ mask5. impute Gaussian

Relative explained variance

XGBOOST

RANDOM FOREST

DECISION TREE

−0.4 −0.2 0 +0.2

−0.2 −0.1 0 +0.1

−0.4 −0.2 0 +0.2

Relative explained variance

XGBOOST

RANDOM FOREST

DECISION TREE

−0.5 −0.25 0 +0.25

−0.2 −0.1 0 +0.1

−0.6 −0.4 −0.2 0 +0.2

Relative explained variance
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Consistency : 40% missing values MCAR
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Discussion



Discussion

Take-home

• Consistent learner for the fully observed data → multiple

imputation on the test set

• Incomplete train and test → same imputation model

• Single mean imputation is consistent, provided a powerful

learner

• tree-based models → Missing Incorporated in Attribute optimizes

not only the split but also the handling of the missing values

• Empirically, good imputation methods reduce the number of samples

required to reach good prediction

• Informative missing data Adding the mask helps imputation - MIA

To be done

• Nonasymptotic results

• Prove the usefulness of methods in MNAR

• Uncertainty associated with the prediction

• Distributional shift : no missing values in the test set ? 25



Context

Major trauma : any injury that endangers the life or the functional

integrity of a person. Road traffic accidents, interpersonal violence,

self-harm, falls, etc → hemorrhage and traumatic brain injury.

Major source of mortality and handicap in France and worldwide

(3rd cause of death, 1st cause for 16-45 - 2-3th cause of disability)

⇒ A public health challenge

Patient prognosis can be improved : standardized and reproducible

procedures but personalized for the patient and the trauma system.

Trauma decision making : rapid and complex decisions under time

pressure in a dynamic and multi-player environment (fragmentation : loss

or distortion of information) with high levels of uncertainty and stress.

Issues : patient management exceeds time frames, diagnostic errors,

decisions not reproducible, etc

⇒ Can Machine Learning, AI help ?

26



Decision support tool for the management of severe trauma :

Traumamatrix

REAL TIME ADAPTIVE AND LEARNING  
INFORMATION MANAGEMENT 

FOR ALL PROVIDERS

Audio-Visual 
Cockpit style 
Decision 
Support

PATIENT CENTERED PROBABILISTIC DECISION SUPPORT
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Causal inference for traumatic brain injury with missing values

• 3050 patients with a brain injury (a lesion visible on the CT scan)

• Treatment : tranexamic acid (binary)

• Outcome : in-ICU death (binary), causes : brain death, withdrawal of

care, head injury and multiple organ failure.

• 45 quantitative & categorical covariates selected by experts

(Delphi process). Pre-hospital (blood pressure, patients reactivity,

type of accident, anamnesis, etc. ) and hospital data
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Missing values

are everywhere : unanswered questions in a survey, lost

data, damaged plants, machines that fail...

The best thing to do with missing values is not to have

any” Gertrude Mary Cox.

⇒ Still an issue with ”big data”

Data integration : data from different sources

i

I

1

1
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1

1

kI

ki

1 J

Xi
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?

?

?

?

?

?

?
?
?
?
?

?

?

?

Multilevel data : sporadically - systematic (one variable missing in one hospital) 29



Imputation assuming a joint modeling with gaussian distribu-

tion

based on Gaussian assumption : xi. ∼ N (µ,Σ)

• Bivariate with missing on x.1 (stochastic reg) : estimate β and σ -

impute from the predictive xi1 ∼ N
(
xi2β̂, σ̂

2
)

• Extension to multivariate case : estimate µ and Σ from an incomplete

data with EM - impute by drawing from N
(
µ̂, Σ̂

)
equivalence

conditional expectation and regression (complement Schur)

packages Amelia, mice (conditional)
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PCA reconstruction

  -2.00 -2.74
  -1.56 -0.77
  -1.11 -1.59
  -0.67 -1.13
  -0.22 -1.22
   0.22 -0.52
   0.67  1.46
   1.11  0.63
   1.56  1.10
   2.00  1.00

  -2.16 -2.58
  -0.96 -1.35
  -1.15 -1.55
  -0.70 -1.09
  -0.53 -0.92
   0.04 -0.34
   1.24  0.89
   1.05  0.69
   1.50  1.15
   1.67  1.33

X

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x1

x2
μ̂

  

X F μ̂

V'

 
≈ 

⇒ Minimizes distance between observations and their projection

⇒ Approx Xn×p with a low rank matrix k < p ‖A‖2
2 = tr(AA>) :

arg min
µ

{
‖X − µ‖2

2 : rank (µ) ≤ k
}

SVD X : µ̂PCA = Un×kDk×kV
′

p×k

= Fn×kV
′

p×k

F = UD PC - scores

V principal axes - loadings
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PCA reconstruction

  -2.00 -2.74
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  -1.11 -1.59
  -0.67 -1.13
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arg min
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{
‖X − µ‖2

2 : rank (µ) ≤ k
}

SVD X : µ̂PCA = Un×kDk×kV
′

p×k

= Fn×kV
′

p×k

F = UD PC - scores

V principal axes - loadings
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Missing values in PCA

⇒ PCA : least squares

arg min
µ

{
‖Xn×p − µn×p‖2

2 : rank (µ) ≤ k
}

⇒ PCA with missing values : weighted least squares

arg min
µ

{
‖Wn×p � (X − µ)‖2

2 : rank (µ) ≤ k
}

with wij = 0 if xij is missing, wij = 1 otherwise ; � elementwise

multiplication

Many algorithms :

Gabriel & Zamir, 1979 : weighted alternating least squares (without explicit

imputation)

Kiers, 1997 : iterative PCA (with imputation)
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Iterative PCA

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x1

x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98
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Iterative PCA

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x1

x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

Initialization ` = 0 : X 0 (mean imputation)
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Iterative PCA

-2 -1 0 1 2 3
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0
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3

x1

x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

x1    x2
-1.98 -2.04
-1.44 -1.56
0.15 -0.18
1.00  0.57
2.27  1.67

PCA on the completed data set → (U`,Λ`,D`) ;
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Iterative PCA
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-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

x1    x2
-1.98 -2.04
-1.44 -1.56
0.15 -0.18
1.00  0.57
2.27  1.67

Missing values imputed with the fitted matrix µ̂` = U`D`V `′
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Iterative PCA

-2 -1 0 1 2 3
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x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

x1    x2
-1.98 -2.04
-1.44 -1.56
0.15 -0.18
1.00  0.57
2.27  1.67

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.57
2.0  1.98

The new imputed dataset is X̂ ` = W � X + (1−W )� µ̂`
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Iterative PCA
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Iterative PCA
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Iterative PCA

x1    x2
-2.0 -2.01
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Steps are repeated until convergence
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Iterative PCA

   x1    x2 

 -2.0 -2.01 

 -1.5 -1.48 

  0.0 -0.01 

  1.5    NA 

  2.0  1.98 

   x1    x2 
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 -1.5 -1.48 

  0.0 -0.01 

  1.5  1.46 

  2.0  1.98 
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PCA on the completed data set → (U`,D`,V `)

Missing values imputed with the fitted matrix µ̂` = U`D`V `′
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Iterative PCA

1. initialization ` = 0 : X 0 (mean imputation)

2. step ` :

(a) PCA on the completed data → (U`,D`,V `) ; k dim kept

(b) µ̂PCA =
∑k

q=1 dquqv
′
q X ` = W � X + (1−W )� µ̂`

3. steps of estimation and imputation are repeated

⇒ Overfitting : nb param (Un×k ,Vk×p)/obs values : k large - NA ; noisy

Regularized versions. Imputation is replaced by

(µ̂)λ =
∑p

q=1 (dq − λ)+uqv
′

q arg minµ

{
‖W � (X − µ)‖2

2 + λ‖µ‖∗
}

Different regularization : Hastie et.al. (2015) (softimpute), Verbank, J. & Husson (2013) ; Gavish

& Donoho (2014), J. & Wager (2015), J. & Sardy (2014), etc.

⇒ Iterative SVD algo good to impute data (matrix completion, Netflix)

⇒ Model makes sense : data = rank k signal+ noise

X = µ+ ε εij
iid∼N

(
0, σ2

)
with µ of low rank

(Udell & Townsend, 2017)
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Random forests versus PCA

Feat1 Feat2 Feat3 Feat4 Feat5...

C1 1 1 1 1 1

C2 1 1 1 1 1

C3 2 2 2 2 2

C4 2 2 2 2 2

C5 3 3 3 3 3

C6 3 3 3 3 3

C7 4 4 4 4 4

C8 4 4 4 4 4

C9 5 5 5 5 5

C10 5 5 5 5 5

C11 6 6 6 6 6

C12 6 6 6 6 6

C13 7 7 7 7 7

C14 7 7 7 7 7

Igor 8 NA NA 8 8

Frank 8 NA NA 8 8

Bertrand 9 NA NA 9 9

Alex 9 NA NA 9 9

Yohann 10 NA NA 10 10

Jean 10 NA NA 10 10

⇒ Missing

Feat1 Feat2 Feat3 Feat4 Feat5

1 1.0 1.00 1 1

1 1.0 1.00 1 1

2 2.0 2.00 2 2

2 2.0 2.00 2 2

3 3.0 3.00 3 3

3 3.0 3.00 3 3

4 4.0 4.00 4 4

4 4.0 4.00 4 4

5 5.0 5.00 5 5

5 5.0 5.00 5 5

6 6.0 6.00 6 6

6 6.0 6.00 6 6

7 7.0 7.00 7 7

7 7.0 7.00 7 7

8 6.87 6.87 8 8

8 6.87 6.87 8 8

9 6.87 6.87 9 9

9 6.87 6.87 9 9

10 6.87 6.87 10 10

10 6.87 6.87 10 10

⇒ Random forests (mice)

Feat1 Feat2 Feat3 Feat4 Feat5

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

3 3 3 3 3

3 3 3 3 3

4 4 4 4 4

4 4 4 4 4

5 5 5 5 5

5 5 5 5 5

6 6 6 6 6

6 6 6 6 6

7 7 7 7 7

7 7 7 7 7

8 8 8 8 8

8 8 8 8 8

9 9 9 9 9

9 9 9 9 9

10 10 10 10 10

10 10 10 10 10

⇒ PCA

⇒ Imputation inherits from the method : RF (computationaly costly)

good for non linear relationship / PCA linear relation

⇒ Aim is not to impute as well as possible but estimate parameters and

their variance (multiple imputation).
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Iterative SVD

⇒ Imputation with FAMD for mixed data :

age weight size  alcohol sex snore tobacco
NA 100     190         NA M      yes no
70        96     186  1-2 gl/d     M      NA <=1
NA 104     194          No    W       no          NA
62        68     165  1-2 gl/d     M       no         <=1

age weight size  alcohol sex snore tobacco
51 100     190  1-2 gl/d M      yes no
70        96     186  1-2 gl/d     M      no <=1
48 104     194          No    W        no         <=1
62        68     165  1-2 gl/d     M       no         <=1

51 100  190 0.2 0.7 0.1 1 0   0   1   1   0   0
70  96  186   0   1   0  1 0 0.8 0.2 0   1   0
48 104  194   1   0   0  0 1   1   0 0.1 0.8 0.1
62  68  165   0   1   0  1 0   1   0   0   1   0

NA 100  190 NA  NA NA 1 0   0   1   1   0   0
70  96  186   0   1   0  1 0 NA  NA 0   1   0
NA 104  194   1   0   0  0 1   1   0 NA  NA NA
62  68  165   0   1   0  1 0   1   0   0   1   0

imputeAFDM

⇒ Multilevel imputation : hospital effect with patient nested in hospital.

(J., Husson, Robin & Balasu., 2018, Imputation of mixed data with multilevel SVD. JCGS)

package MissMDA.
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Imputation methods : conditional model

Imputation with fully conditional specification (FCS). Impute with a joint

model defined implicitely through the conditional distributions (mice).

⇒ Imputation model for each variable is a forest.

1. Initial imputation : mean imputation - random category

2. for t in 1 : T loop through iterations t

3. for j in 1 : p loop through variables j

Define currently complete data set except

X t
−j = (X t

1 ,X
t
j−1,X

t−1
j+1 ,X

t−1
p ), then X t

j is obtained by

• fitting a RF X obs
j on the other variables X t

−j

• predicting Xmiss
j using the trained RF on X t

−j

package missForest (Stekhoven & Buhlmann, 2011)
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Mechanism

M = (M1, . . . ,Md) : indicator of missing values in X = (X1, . . . ,Xd).

Missing value mechanisms (Rubin, 1976)

MCAR ∀φ, ∀m, x, gφ(m|x) = gφ(m)

MAR ∀φ, ∀i ,∀x′, o(x′,mi ) = o(xi ,mi )⇒ gφ(mi |x′) = gφ(mi |xi )
(e.g. gφ((0, 0, 1, 0) | (3, 2, 4, 8)) = gφ((0, 0, 1, 0) | (3, 2, 7, 8)))

MNAR Not MAR

→ useful for likelihoods

Missing value mechanisms – variable level

MCAR M |= X
MAR (bis) ∀S ⊂ {1, . . . , d}, (Mj)j∈S |= (Xj)j∈S | (Xk)k∈Sc

MNAR Not MAR

→ useful for our results
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Parametric estimation

Let X ∼ fθ? .

Observed log-likelihood `obs(θ) =
n∑

i=1

log

∫
fθ(x)dδo(·,mi )=o(xi ,mi )(x).

(inspired by Seaman 2013)

Example

X1,X2 ∼ fθ(x1)gθ(x2|x1)

M1,2, . . . ,Mr ,2 = 1

`obs(θ) =
r∑

i=1

log fθ(x1) +
n∑

i=r+1

log fθ(x1)gθ(x2|x1).
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Parametric estimation

Let X ∼ fθ? .

Observed log-likelihood `obs(θ) =
n∑

i=1

log

∫
fθ(x)dδo(·,mi )=o(xi ,mi )(x).

Full log-likelihood `full(θ, φ) =
n∑

i=1

log

∫
fθ(x)gφ(mi |x)dδo(·,mi )=o(xi ,mi )(x).

Theorem (Theorem 7.1 in Rubin 1976)

θ can be infered from `obs, assuming MAR.
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Ignorable mechanism

Full log-likelihood :

`full(θ) =
n∑

i=1

log

∫
fθ(x)gφ(mi |x)dδo(·,mi )=o(xi ,mi )(x).

Observed log-likelihood :

`obs(θ) =
n∑

i=1

log

∫
fθ(x)dδo(·,mi )=o(xi ,mi )(x).

Assuming MAR,

`full(θ, φ) =
n∑

i=1

log

∫
fθ(x)gφ(mi |xi )dδo(·,mi )=o(xi ,mi )(x)

= `obs(θ) +
n∑

i=1

log gφ(mi |xi ).
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Parametric estimation

Let X ∼ fθ? .

Observed log-likelihood `obs(θ) =
n∑

i=1

log

∫
fθ(x)dδo(·,mi )=o(xi ,mi )(x).

EM algorithm (Dempster, 1977)

Starting from an initial parameter θ(0), the algorithm alternates the two

following steps,

(E-step) Q(θ|θ(t)) =
n∑

i=1

∫
(log fθ(x))fθ(t) (x)dδo(·,mi )=o(xi ,mi )(x).

(M-step) θ(t+1) ∈ argmax
θ∈Θ

Q(θ|θ(t)).

The likelihood is guaranteed to increase.
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Missing values

X̃ = X� (1−M) + NA�M takes value in R ∪ {NA}

The (unobserved) complete sample Dn = (Xi ,Mi ,Yi )1≤i≤n ∼ (X,M,Y )

dn =


2 3 1 0 0 0 1 0 15

1 0 3 5 0 1 0 0 13

9 4 2 5 0 0 0 1 18

7 6 3 2 0 0 1 1 10

 ,
The observed training set D̃n,train = (X̃i ,Yi )1≤i≤n

d̃n =


2 3 NA 0 15

1 NA 3 5 13

9 4 2 NA 18

7 6 NA NA 10

 .
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Split on available observations

⇒ Biais in variable selection : tendency to underselect variables with

missing values (favor variables where many splits are available)

⇒ Conditional tree (Hothorn, 2006) Ctree selects variables with a test{
X1 |= X2 ∼ N (0, 1)

Y = 0.25X1 + ε with ε ∼ N (0, 1)

Frequency of selection of X1 when there are missing values on X1 :

CART selects the non-informative variable X2 more frequently 43



Split comparison

{
Y = X1

X1 ∼ U([0, 1])
,

{
P[M1 = 0] = 1− p

P[M1 = 1] = p
,

The best split CART s? = 1/2

The split chosen by the MIA
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Risk comparison

Consider the regression model
Y = X1

X1 ∼ U([0, 1])

X2 = X11W=1

,

{
P[W = 0] = η

P[W = 1] = 1− η
,

{
P[M1 = 0] = 1− p

P[M1 = 1] = p
,

where (M1,W ) |= (X1,Y ).
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Research activities

• Dimensionality reduction methods to visualize complex data (PCA

based) : multi-sources, textual, arrays, questionnaire

• Low rank estimation, selection of regularization parameters

• Missing values - matrix completion

• Causal inference

• Fields of application : bio-sciences (agronomy, sensory analysis),

health data (hospital data)

• R community : book R for Stat, R foundation, taskforce, packages :

FactoMineR explore continuous, categorical, multiple contingency tables

(correspondence analysis), combine clustering and PC, ..

MissMDA for single and multiple imputation, PCA with missing

denoiseR to denoise data with low-rank estimation

R-miss-tastic missing values plateform

46

http://factominer.free.fr/
http://juliejosse.com/wp-content/uploads/2015/11/jss1451.pdf
https://github.com/julierennes/denoiseR
https://github.com/R-miss-tastic
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