On the consistency of supervised learning with missing values

Julie Josse, Nicolas Prost, Erwan Scornet, Gael Varoquaux CMAP, INRIA Parietal

4 April 2019
https://hal.archives-ouvertes.fr/hal-02024202
Google Brain, Paris

Overview

1. Introduction
2. Handling missing values (inferential framework)
3. Supervised learning with missing values
4. Decision trees
5. Discussion

Introduction

Collaborators

- PhD students : G. Robin, W. Jiang, I. Mayer, N. Prost, (X)
- Colleagues: J-P Nadal (EHESS), E. Scornet (X), G. Varoquaux (INRIA),
S. Wager (Stanford), B. Naras (Stanford)
- Traumabase (hospital) : T. Gauss, S. Hamada, J-D Moyer
- Capgemini

Traumabase

15000 patients, 250 variables, 11 hospitals from 2011 (4000 new patients/ year)

| Center | Accident | | Age | Sex | Weight | Height | BMI BP SBP | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beaujon | Fall | 54 | m | 85 | NR | NR | 180 | 110 |
| Pitie Salpetriere | Gun | 26 | m | NR | NR | NR | 131 | 62 |
| Beaujon | AVP moto | 63 | m | 80 | 1.8 | 24.69 | 145 | 89 |
| Pitie Salpetriere AVP pedestrian | 30 | W | NR | NR | NR | 107 | 66 | |
| HEGP | White weapon | 16 | m | 98 | 1.92 | 26.58 | 118 | 54 |

Sp02	Temperature	Lactates \quad Hb	Glasgow	Transfusion	
97	35.6	<NA>	12.7	12	yes
100	36	3.9	11.4	3	no
100	36	NM 14.4	15	no	
100	36.6	NM 14.3	15	yes	

\Rightarrow Estimate causal effect : administration of the (treatment)
"tranexamic acid" (within the first 3 hours after the accident) on mortality (outcome) for traumatic brain injury patients.

Traumabase

15000 patients, 250 variables, 11 hospitals from 2011 (4000 new patients/ year)

| Center | Accident | | Age | Sex | Weight | Height | BMI BP | SBP |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beaujon | Fall | 54 | m | 85 | NR | NR | 180 | 110 |
| Pitie Salpetriere | Gun | 26 | m | NR | NR | NR | 131 | 62 |
| Beaujon | AVP moto | 63 | m | 80 | 1.8 | 24.69 | 145 | 89 |
| Pitie Salpetriere AVP pedestrian | 30 | W | NR | NR | NR | 107 | 66 | |
| HEGP | White weapon | 16 | m | 98 | 1.92 | 26.58 | 118 | 54 |

Sp02	Temperature	Lactates \quad Hb	Glasgow	Transfusion	
97	35.6	<NA>	12.7	12	yes
100	36	3.9	11.4	3	no
100	36	NM 14.4	15	no	
100	36.6	NM 14.3	15	yes	

\Rightarrow Predict whether to start a blood transfusion, the risk of hemorrhagic shock, etc...
\Rightarrow (Logistic) regressions with missing categorical/continuous values

Missing values

Percentage of missing values

Handling missing values
(inferential framework)

Solutions to handle missing values

Litterature : Schaefer (2002) ; Little \& Rubin (2002) ; Gelman \& Meng (2004) ; Kim \& Shao (2013) ; Carpenter \& Kenward (2013) ; van Buuren (2015)

Modify the estimation process to deal with missing values

Maximum likelihood : EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) / Louis for their variability Ex logistic regression: EM + Louis to get $\hat{\beta}, \hat{V}(\hat{\beta})$

Aim : estimate parameters and their variance from an incomplete data. Inferential framework

Solutions to handle missing values

Litterature : Schaefer (2002) ; Little \& Rubin (2002) ; Gelman \& Meng (2004) ; Kim \& Shao (2013) ; Carpenter \& Kenward (2013) ; van Buuren (2015)

Modify the estimation process to deal with missing values

Maximum likelihood : EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) / Louis for their variability Ex logistic regression: EM + Louis to get $\hat{\beta}, \hat{V}(\hat{\beta})$

Difficult to establish ? Not many software even for simple models One specific algorithm for each statistical method...

Aim : estimate parameters and their variance from an incomplete data. Inferential framework

Solutions to handle missing values

Litterature : Schaefer (2002) ; Little \& Rubin (2002) ; Gelman \& Meng (2004) ; Kim \& Shao (2013) ; Carpenter \& Kenward (2013) ; van Buuren (2015)

Modify the estimation process to deal with missing values

Maximum likelihood : EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) / Louis for their variability Ex logistic regression: EM + Louis to get $\hat{\beta}, \hat{V}(\hat{\beta})$

Difficult to establish ? Not many software even for simple models One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set

 on which you can perform any statistical method (Rubin, 1976)Ex logistic regression : impute and apply logistic model to get $\hat{\beta}, \hat{V}(\hat{\beta})$
Aim : estimate parameters and their variance from an incomplete data. Inferential framework

Dealing with missing values

\Rightarrow Imputation to get a complete data set

Mean imputation deforms joint and marginal distributions

Dealing with missing values

\Rightarrow Mean imputation is bad for estimation
Wright IJ, et al. (2004). The worldwide leaf economics spectrum. Nature, 69000 species - LMA (leaf mass per area), LL (leaf lifespan), Amass (photosynthetic assimilation), Nmass (leaf nitrogen), Pmass (leaf phosphorus), Rmass (dark respiration rate)

Imputation methods

- Impute by regression take into account the relationship : estimate β impute $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \Rightarrow$ variance underestimated and correlation overestimated.
- Impute by stochastic reg : estimate β and σ - impute from the predictive $y_{i} \sim \mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right) \Rightarrow$ preserve distribution

Mean imputation

Regression imputation

0.01
0.72
0.78

0.01
0.5
0.30

$$
\begin{aligned}
& \mu_{y}=0 \\
& \sigma_{y}=1 \\
& \rho=0.6
\end{aligned}
$$

$$
0.30
$$

Stochastic regression imputation

0.01
0.99
0.59

Imputation methods

Assuming a joint model

- Gaussian distribution : $x_{i} \sim \mathcal{N}(\mu, \Sigma)$ (package Amelia)
- low rank : $X_{n \times d}=\mu_{n \times d}+\varepsilon \varepsilon \varepsilon_{i j}{ }^{\text {iid }} \mathcal{N}\left(0, \sigma^{2}\right)$ with μ of low rank k (package softimpute, Hastie; missMDA, Josse)
- latent class - nonparametric Bayesian (package dpmpm, Reiter)
- deep learning using variational autoencoders (MIWAE, Mattei, 2018)

Using conditional models (joint implicitly defined)

- with logistic, multinomial, poisson regressions (mice, Van Buuren)
- iterative impute each variable by random forests (missForest, Buhimann)

Imputation for categorical, mixed, multilevel/blocks data, etc.
\Rightarrow R-miss-tastic missing values plateform
Aim is not to impute but estimate parameters \& variance (multiple imputation)

Logistic regression with missing covariates : parameter estima-

 tion, model selection and prediction. (Jiang, J., Lavielle, Gauss, Hamada, 2018)$x=\left(x_{i j}\right)$ a $n \times d$ matrix of quantitative covariates
$y=\left(y_{i}\right)$ an n-vector of binary responses $\{0,1\}$
Logistic regression model

$$
\mathbb{P}\left(y_{i}=1 \mid x_{i} ; \beta\right)=\frac{\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}{1+\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}
$$

Covariables

$$
x_{i} \underset{\text { i.i.d. }}{\sim} \mathcal{N}_{d}(\mu, \Sigma)
$$

Log-likelihood for complete-data with $\theta=(\mu, \Sigma, \beta)$

$$
\mathcal{L} \mathcal{L}(\theta ; x, y)=\sum_{i=1}^{n}\left(\log \left(\mathrm{p}\left(y_{i} \mid x_{i} ; \beta\right)\right)+\log \left(\mathrm{p}\left(x_{i} ; \mu, \Sigma\right)\right)\right)
$$

Decomposition : $x=\left(x_{\text {obs }}, x_{\text {mis }}\right)$
Under MAR, possibility to ignore the missing value mechanism
Observed likelihood $\arg \max \mathcal{L} \mathcal{L}\left(\theta ; x_{\text {obs }}, y\right)=\int \mathcal{L} \mathcal{L}(\theta ; x, y) d x_{\text {mis }}$

Stochastic Approximation EM

- E-step : Evaluate the quantity

$$
\begin{aligned}
Q_{k}(\theta) & =\mathbb{E}\left[\mathcal{L} \mathcal{L}(\theta ; x, y) \mid x_{\text {obs }}, y ; \theta_{k-1}\right] \\
& =\int \mathcal{L} \mathcal{L}(\theta ; x, y) p\left(x_{\text {mis }} \mid x_{\text {obs }}, y ; \theta_{k-1}\right) d x_{\text {mis }}
\end{aligned}
$$

- M-step : $\theta_{k}=\arg \max _{\theta} Q_{k}(\theta)$
\Rightarrow Unfeasible computation of expectation
MCEM (Wei \& Tanner, 1990) : generate samples of missing data from $\mathrm{p}\left(x_{\text {mis }} \mid x_{\text {obs }}, y ; \theta_{k-1}\right)$ and replaces the expectation by an empirical mean.
\Rightarrow Require a huge number of samples
SAEM (Lavielle, 2014) almost sure convergence to MLE. (Metropolis Hasting - Variance estimation with Louis).
Unbiased estimates : $\hat{\beta}_{1}, \ldots, \hat{\beta}_{d}-\hat{V}\left(\hat{\beta}_{1}\right), \ldots, \hat{V}\left(\hat{\beta}_{d}\right)$ - good coverage

Supervised learning with missing

 values
Supervised learning

- A feature matrix \mathbf{X} and a response vector Y
- Find a prediction function that minimizes the expected risk. Bayes rule: $f^{\star} \in \arg \min \mathbb{E}[\ell(f(\mathbf{X}), Y)] f^{\star}(\mathbf{X})=\mathbb{E}[Y \mid \mathbf{X}]$

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

- Empirical risk minimization :

$$
\hat{f}_{\mathcal{D}_{n, \text { train }}} \in \underset{f: \mathcal{X} \rightarrow \mathcal{Y}}{\arg \min }\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\mathbf{X}_{i}\right), Y_{i}\right)\right)
$$

A new data $\mathcal{D}_{n, \text { test }}$ to estimate the generalization error rate

- Bayes consistent : $\mathbb{E}\left[\ell\left(\hat{f}_{n}(\mathbf{X}), Y\right)\right] \xrightarrow[n \rightarrow \infty]{\longrightarrow} \mathbb{E}\left[\ell\left(f^{\star}(\mathbf{X}), Y\right)\right]$

Supervised learning

- A feature matrix \mathbf{X} and a response vector Y
- Find a prediction function that minimizes the expected risk.

Bayes rule: $f^{\star} \in \arg \min \mathbb{E}[\ell(f(\mathbf{X}), Y)] f^{\star}(\mathbf{X})=\mathbb{E}[Y \mid \mathbf{X}]$

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

- Empirical risk minimization :

$$
\hat{f}_{\mathcal{D}_{n, \text { train }}} \in \underset{f: \mathcal{X} \rightarrow \mathcal{Y}}{\arg \min }\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\mathbf{X}_{i}\right), Y_{i}\right)\right)
$$

A new data $\mathcal{D}_{n, \text { test }}$ to estimate the generalization error rate

- Bayes consistent : $\mathbb{E}\left[\ell\left(\hat{f}_{n}(\mathbf{X}), Y\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\ell\left(f^{\star}(\mathbf{X}), Y\right)\right]$

Differences with classical litterature

- response variable Y - Aim : Prediction
- two data sets (out of sample) with missing values : train \& test sets
\Rightarrow Is it possible to use previous approaches (EM - impute), consistent ?
\Rightarrow Do we need to design new ones?

EM and out-of sample prediction

$\mathbb{P}\left(y_{i}=1 \mid x_{i} ; \beta\right)=\frac{\exp \left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}{1+\exp \left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}$ After EM $\hat{\theta}_{n}=\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \ldots, \hat{\beta}_{d}, \hat{\mu}, \hat{\Sigma}\right)$
New obs : $x_{n+1}=\left(x_{(n+1) 1}, N A, N A, x_{(n+1) 4}, \ldots, x_{(n+1) d}\right)$
Predict Y on a test set with missing entries $x_{\text {test }}=\left(x_{o b s}, x_{\text {miss }}\right)$

EM and out-of sample prediction

$\mathbb{P}\left(y_{i}=1 \mid x_{i} ; \beta\right)=\frac{\exp \left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}{1+\exp \left(\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}$ After EM $\hat{\theta}_{n}=\left(\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \ldots, \hat{\beta}_{d}, \hat{\mu}, \hat{\Sigma}\right)$
New obs : $x_{n+1}=\left(x_{(n+1) 1}, N A, N A, x_{(n+1) 4}, \ldots, x_{(n+1) d}\right)$
Predict Y on a test set with missing entries $x_{\text {test }}=\left(x_{o b s}, x_{\text {miss }}\right)$

$$
\begin{aligned}
& \hat{y}=\underset{y}{\arg \max } \mathrm{p}_{\hat{\theta}}\left(y \mid x_{\mathrm{obs}}\right) \\
& =\underset{y}{\arg \max } \int \mathrm{p}_{\hat{\theta}}(y \mid x) \mathrm{p}_{\hat{\theta}}\left(x_{\text {mis }} \mid x_{\mathrm{obs}}\right) d x_{\text {mis }} \\
& =\underset{y}{\arg \max } \mathbb{E}_{\mathrm{p}_{\mathbf{x}_{m} \mid x_{o}=\mathbf{x}_{o}}} \mathrm{p}_{\hat{\theta}_{n}}\left(y \mid X_{m}, \mathbf{x}_{o}\right) \approx \underset{y}{\arg \max } \sum_{m=1}^{M} \mathrm{p}_{\hat{\theta}_{n}}\left(y \mid x_{o \mathrm{obs}}, x_{\operatorname{mis}}^{(m)}\right) . \\
& \hat{p}=\frac{1}{M} \sum_{m=1}^{M} \hat{p}^{m}
\end{aligned}
$$

Prediction on test incomplete data with a full data model

- Let a Bayes-consistent predictor f for complete data : $f(\mathbf{X})=\mathbb{E}[Y \mid \mathbf{X}]$
- Note the data : $\widetilde{\mathbf{X}}=\mathbf{X} \odot(\mathbf{1}-\mathbf{M})+\mathrm{NA} \odot \mathbf{M}($ takes value in $\mathbb{R} \cup\{N A\})$
- Perform multiple imputation :

$$
f_{\text {mult imput }}^{\star}(\widetilde{\mathbf{x}})=\mathbb{E}_{\mathbf{X}_{m} \mid \mathbf{X}_{o}=\mathbf{x}_{o}}\left[f\left(\mathbf{X}_{m}, \mathbf{x}_{o}\right)\right]
$$

same as out-of sample EM but assuming know f

Theorem

Consider the regression model $Y=f(\mathbf{X})+\varepsilon$, where

- we assume MAR $\forall \mathcal{S} \subset\{1, \ldots, d\},\left(M_{j}\right)_{j \in \mathcal{S}} \Perp\left(X_{j}\right)_{j \in \mathcal{S}} \mid\left(X_{k}\right)_{k \in \mathcal{S}^{c}}$
- $\varepsilon \Perp\left(M_{1}, X_{1}, \ldots, M_{d}, X_{d}\right)$ is a centred noise

Then multiple imputation is consistent :

$$
f_{\text {mult imput }}^{\star}(\widetilde{\mathbf{x}})=\mathbb{E}[Y \mid \widetilde{\mathbf{X}}=\widetilde{\mathbf{x}}]
$$

Proof

Let $\widetilde{\mathbf{x}} \in(\mathbb{R} \cup N A)^{d}$. Without loss of generality, assume only $\tilde{x}_{1}, \ldots, \tilde{x}_{j}$ are NA.

$$
\begin{aligned}
f_{\text {mult imput }}^{\star}(\widetilde{\mathbf{x}}) & =\mathbb{E} \mathbf{X}_{\mathbf{x}_{m} \mid X_{o}=\mathbf{x}_{o}}\left[f\left(\mathbf{X}_{m}, X_{o}=\mathbf{x}_{o}\right)\right] \\
& =\mathbb{E}\left[f\left(\mathbf{X}_{m}, X_{o}=\mathbf{x}_{o}\right) \mid X_{o}=\mathbf{x}_{o}\right] \\
& =\mathbb{E}\left[Y \mid X_{o}=\mathbf{x}_{o}\right] \\
& =\mathbb{E}\left[Y \mid \widetilde{X}_{j+1}=\tilde{x}_{j+1}, \ldots, \widetilde{X}_{d}=\tilde{x}_{d}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[Y \mid \widetilde{\mathbf{X}}=\widetilde{\mathbf{x}}] & =\mathbb{E}\left[Y \mid \tilde{X}_{1}=N A, \ldots, \tilde{X}_{j}=N A, \tilde{X}_{j+1}=\tilde{x}_{j+1}, \ldots, \tilde{X}_{d}=\tilde{x}_{d}\right] \\
& =\mathbb{E}\left[Y \mid M_{1}=1, \ldots, M_{j}=1, \tilde{X}_{j+1}=\tilde{x}_{j+1}, \ldots, \tilde{X}_{d}=\tilde{x}_{d}\right] \\
& =\mathbb{E}\left[Y \mid \tilde{X}_{j+1}=\tilde{x}_{j+1}, \ldots, \tilde{X}_{d}=\tilde{x}_{d}\right]
\end{aligned}
$$

Imputation prior to learning

Impute the train, learn a model with $\hat{X}_{\text {train }}, Y_{\text {train }}$. Impute the test with the same imputation and predict with $\hat{X}_{\text {test }}$ and $\hat{f}_{\text {train }}$

Imputation prior to learning

Imputation with the same model

Easy to implement for univariate imputation : the means ($\hat{\mu}_{1}, \ldots, \hat{\mu}_{d}$) of each colum of the train. Also OK for Gaussian imputation. Issue : many methods are "black-boxes" and take as an imput the incomplete data and output the completed data (mice, missForest)

Separate imputation

Impute train and test separately (with a different model) Issue : depends on the size of the test set ? one observation?

Group imputation/ semi-supervised

Impute train and test simultaneously but the predictive model is learned only on the training imputed data set
Issue : sometimes not the training set

Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Framework - assumptions

- $Y=f(\mathbf{X})+\varepsilon$
- $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ has a continuous density $g>0$ on $[0,1]^{d}$
- $\|f\|_{\infty}<\infty$
- Missing data on X_{1} with $M_{1} \Perp X_{1} \mid X_{2}, \ldots, X_{d}$.
- $\left(x_{2}, \ldots, x_{d}\right) \mapsto \mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]$ is continuous
- ε is a centered noise independent of $\left(\mathbf{X}, M_{1}\right)$
(remains valid when missing values occur for variables X_{1}, \ldots, X_{j})

Imputation with the same model : mean imputation is consistent

Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Imputed entry $\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right): x_{1}^{\prime}=x_{1} \mathbb{1}_{M_{1}=0}+\mathbb{E}\left[X_{1}\right] \mathbb{1}_{M_{1}=1}$

Theorem

$$
\begin{aligned}
f_{\text {impute }}^{\star}\left(x^{\prime}\right)= & \mathbb{E}\left[Y \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=1\right] \\
& \mathbb{1}_{x_{1}^{\prime}=\mathbb{E}\left[X_{1}\right]} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]>0} \\
& +\mathbb{E}\left[Y \mid \mathbf{X}=\mathbf{x}^{\prime}\right] \mathbb{1}_{x_{1}^{\prime}=\mathbb{E}}\left[X_{1}\right] \mathbb{1}_{\mathbb{P}}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]=0 \\
& +\mathbb{E}\left[Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=0\right] \mathbb{1}_{x_{1}^{\prime} \neq \mathbb{E}\left[X_{1}\right] .} .
\end{aligned}
$$

Prediction with mean is equal to the Bayes function almost everywhere

$$
f_{\text {impute }}^{\star}\left(x^{\prime}\right)=\widetilde{f}^{\star}(\widetilde{\mathbf{X}})=\mathbb{E}[Y \mid \widetilde{\mathbf{X}}=\widetilde{\mathbf{x}}]
$$

Imputation with the same model : mean imputation is consistent

Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Rationale

The learning algorithm learns the imputed value (here the mean) and use that information to detect that the entry was initially missing. If the imputed value changes from train to test set the learning algorithm may fail, since imputed data distribution differs between train and test sets.
\Rightarrow Other values than the mean are possible. Mean not a bad choice for prediction despite its drawbacks for estimation.

Trees - Simulations

End-to-end learning with missing values

Trees natural for empirical risk minimization with NA : handle half discrete dat

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children : find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children : find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children : find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART with missing values : split on available cases

root
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.

CART with missing values : split on available cases

$$
\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]
$$

CART with missing values : split on available cases

$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.
Propagate observation with missing values?
Probabilistic splits : Bernouilli $\left(\frac{\# L}{\# L+\# R}\right)$ (C4.5 algorithm)
Block : send all to a side by minimizing the error (xgboost, lightgbm)
Surrogate split : search for a split on another variable that induces a partition close to the original one (rpart)
Rk: Implicit impute by an interval (missing values assigned to the left or right)
Variable selection bias (not a problem to predict) : conditional trees (Hothorn)

Missing incorporated in attribute, Twala et al 2008

Selection of the variable, threshold and propagation of missing values

$$
f^{\star} \in \underset{f \in \mathcal{P}_{c, \text { miss }}}{\arg \min } \mathbb{E}\left[(Y-f(\widetilde{\mathbf{X}}))^{2}\right],
$$

where $\mathcal{P}_{c, \text { miss }}=\mathcal{P}_{c, m i s s, L} \cup \mathcal{P}_{c, \text { miss }, R} \cup \mathcal{P}_{c, \text { miss ,sep }}$ with

- $\mathcal{P}_{c, \text { miss }, L} \rightarrow\left\{\left\{\widetilde{X}_{j} \leq z \vee \widetilde{X}_{j}=\mathrm{NA}\right\},\left\{\widetilde{X}_{j}>z\right\}\right\}$
- $\mathcal{P}_{c, m i s s, R} \rightarrow\left\{\left\{\widetilde{X}_{j} \leq z\right\},\left\{\widetilde{X}_{j}>z \vee \widetilde{X}_{j}=N A\right\}\right\}$
- $\mathcal{P}_{c, \text { miss sep }} \rightarrow\left\{\left\{\widetilde{X}_{j} \neq \mathrm{NA}\right\},\left\{\widetilde{X}_{j}=\mathrm{NA}\right\}\right\}$.
\Rightarrow Missing values treated like a category (well to handle $\mathbb{R} \cup N A$)
\Rightarrow Target $\mathbb{E}[Y \mid \tilde{\mathbf{X}}]=\sum_{\mathbf{m} \in\{0,1\}^{d}} \mathbb{E}[Y \mid o(\mathbf{X}, \mathbf{m}), \mathbf{M}=\mathbf{m}] \mathbb{1}_{\mathbf{M}=\mathbf{m}}$
\Rightarrow Good for informative pattern (\mathbf{M} explains Y)
\Rightarrow Implementation : duplicate the incomplete columns, and replace the missing entries once by $+\infty$ and once by $-\infty$.

Simulations : 20% missing values

Quadratic: $Y=X_{1}^{2}+\varepsilon, x_{i .} \in \mathcal{N}\left(\mu, \Sigma_{4 \times 4}\right), \rho=0.5, n=1000$

$$
\begin{gathered}
\widetilde{d}_{n}=\left[\begin{array}{ccccc}
2 & 3 & \mathrm{NA} & 0 & 15 \\
1 & \mathrm{NA} & 3 & 5 & 13 \\
9 & 4 & 2 & \mathrm{NA} & 18 \\
7 & 6 & \mathrm{NA} & \mathrm{NA} & 10
\end{array}\right] \\
\widetilde{d}_{n}+\text { mask }=\left[\begin{array}{ccccccccc}
2 & 3 & \mathrm{NA} & 0 & 0 & 0 & 1 & 0 & 15 \\
1 & \mathrm{NA} & 3 & 5 & 0 & 1 & 0 & 0 & 13 \\
9 & 4 & 2 & \mathrm{NA} & 0 & 0 & 0 & 1 & 18 \\
7 & 6 & \mathrm{NA} & \mathrm{NA} & 0 & 0 & 1 & 1 & 10
\end{array}\right]
\end{gathered}
$$

Imputation (mean, gaussian) + prediction with trees
Imputation (mean, gaussian) + mask+ prediction with trees Trees MIA

Simulations : 20\% missing values

Quadratic: $Y=X_{1}^{2}+\varepsilon, x_{i .} \in \mathcal{N}\left(\mu, \Sigma_{4 \times 4}\right), \rho=0.5, n=1000$
MCAR (MAR)

$$
M_{i, 1} \sim \mathcal{B}(p) \quad M_{i, 1}=\mathbb{1}_{X_{i, 1}>\left[X_{1}\right]_{(1-p) n}} \quad Y=X_{1}^{2}+3 M_{1}+\varepsilon
$$

Consistency : 40\% missing values MCAR

Discussion

Discussion

Take-home

- Consistent learner for the fully observed data \rightarrow multiple imputation on the test set
- Incomplete train and test \rightarrow same imputation model
- Single mean imputation is consistent, provided a powerful learner
- tree-based models \rightarrow Missing Incorporated in Attribute optimizes not only the split but also the handling of the missing values
- Empirically, good imputation methods reduce the number of samples required to reach good prediction
- Informative missing data Adding the mask helps imputation - MIA

To be done

- Nonasymptotic results
- Prove the usefulness of methods in MNAR
- Uncertainty associated with the prediction
- Distributional shift : no missing values in the test set ?

Context

Major trauma : any injury that endangers the life or the functional integrity of a person. Road traffic accidents, interpersonal violence, self-harm, falls, etc \rightarrow hemorrhage and traumatic brain injury.

Major source of mortality and handicap in France and worldwide (3rd cause of death, 1st cause for 16-45-2-3th cause of disability) \Rightarrow A public health challenge

Patient prognosis can be improved : standardized and reproducible procedures but personalized for the patient and the trauma system.

Trauma decision making : rapid and complex decisions under time pressure in a dynamic and multi-player environment (fragmentation : loss or distortion of information) with high levels of uncertainty and stress. Issues : patient management exceeds time frames, diagnostic errors, decisions not reproducible, etc
\Rightarrow Can Machine Learning, AI help ?

Decision support tool for the management of severe trauma : Traumamatrix

Causal inference for traumatic brain injury with missing values

- 3050 patients with a brain injury (a lesion visible on the CT scan)
- Treatment : tranexamic acid (binary)
- Outcome : in-ICU death (binary), causes : brain death, withdrawal of care, head injury and multiple organ failure.
- 45 quantitative \& categorical covariates selected by experts (Delphi process). Pre-hospital (blood pressure, patients reactivity, type of accident, anamnesis, etc.) and hospital data

Missing values

are everywhere : unanswered questions in a survey, lost data, damaged plants, machines that fail...

The best thing to do with missing values is not to have any" Gertrude Mary Cox.
\Rightarrow Still an issue with " big data"
Data integration : data from different sources

Multilevel data : sporadically - systematic (one variable missing in one hospital)
based on Gaussian assumption : $x_{i} \sim \mathcal{N}(\mu, \Sigma)$

- Bivariate with missing on x_{1} (stochastic reg) : estimate β and σ impute from the predictive $x_{i 1} \sim \mathcal{N}\left(x_{i 2} \hat{\beta}, \hat{\sigma}^{2}\right)$
- Extension to multivariate case : estimate μ and Σ from an incomplete data with EM - impute by drawing from $\mathcal{N}(\hat{\mu}, \hat{\Sigma})$ equivalence conditional expectation and regression (complement Schur)
packages Amelia, mice (conditional)

PCA reconstruction

\Rightarrow Minimizes distance between observations and their projection
\Rightarrow Approx $X_{n \times p}$ with a low rank matrix $k<p\|A\|_{2}^{2}=\operatorname{tr}\left(A A^{\top}\right)$:

$$
\underset{\mu}{\arg \min }\left\{\|X-\mu\|_{2}^{2}: \operatorname{rank}(\mu) \leq k\right\}
$$

$$
\begin{aligned}
\text { SVD } X: \hat{\mu}^{\mathrm{PCA}} & =U_{n \times k} D_{k \times k} V_{p \times k}^{\prime} & & F=U D \quad \mathrm{PC}-\text { scores } \\
& =F_{n \times k} V_{p \times k}^{\prime} & & V \text { principal axes - loadings }
\end{aligned}
$$

PCA reconstruction

\Rightarrow Minimizes distance between observations and their projection
\Rightarrow Approx $X_{n \times p}$ with a low rank matrix $k<p\|A\|_{2}^{2}=\operatorname{tr}\left(A A^{\top}\right)$:

$$
\underset{\mu}{\arg \min }\left\{\|X-\mu\|_{2}^{2}: \operatorname{rank}(\mu) \leq k\right\}
$$

$$
\begin{array}{rlrl}
\text { SVD } X: \hat{\mu}^{\mathrm{PCA}} & =U_{n \times k} D_{k \times k} V_{p \times k}^{\prime} & & F=U D \quad \text { PC - scores } \\
=F_{n \times k} V_{p \times k}^{\prime} & & V \text { principal axes - loadings }
\end{array}
$$

Missing values in PCA

\Rightarrow PCA : least squares

$$
\underset{\mu}{\arg \min }\left\{\left\|X_{n \times p}-\mu_{n \times p}\right\|_{2}^{2}: \operatorname{rank}(\mu) \leq k\right\}
$$

\Rightarrow PCA with missing values : weighted least squares

$$
\underset{\mu}{\arg \min }\left\{\left\|W_{n \times p} \odot(X-\mu)\right\|_{2}^{2}: \operatorname{rank}(\mu) \leq k\right\}
$$

with $w_{i j}=0$ if $x_{i j}$ is missing, $w_{i j}=1$ otherwise ; \odot elementwise multiplication

Many algorithms :
Gabriel \& Zamir, 1979 : weighted alternating least squares (without explicit imputation)
Kiers, 1997 : iterative PCA (with imputation)

Iterative PCA

$$
\begin{array}{rr}
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & \mathrm{NA} \\
2.0 & 1.98
\end{array}
$$

Iterative PCA

Initialization $\ell=0: X^{0}$ (mean imputation)

Iterative PCA

PCA on the completed data set $\rightarrow\left(U^{\ell}, \Lambda^{\ell}, D^{\ell}\right)$;

Iterative PCA

Missing values imputed with the fitted matrix $\hat{\mu}^{\ell}=U^{\ell} D^{\ell} V^{\ell \prime}$

Iterative PCA

The new imputed dataset is $\hat{X}^{\ell}=W \odot X+(1-W) \odot \hat{\mu}^{\ell}$

Iterative PCA

Iterative PCA

$$
\begin{array}{rr}
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & \mathrm{NA} \\
2.0 & 1.98 \\
& \\
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & 0.57 \\
2.0 & 1.98 \\
& \\
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.00 & -2.01 \\
-1.47 & -1.52 \\
0.09 & -0.11 \\
1.20 & 0.90 \\
2.18 & 1.78 \\
& \\
\mathrm{x} 1 & \mathrm{x} 2 \\
-2.0 & -2.01 \\
-1.5 & -1.48 \\
0.0 & -0.01 \\
1.5 & 0.90 \\
2.0 & 1.98
\end{array}
$$

Iterative PCA

Steps are repeated until convergence

Iterative PCA

PCA on the completed data set $\rightarrow\left(U^{\ell}, D^{\ell}, V^{\ell}\right)$ Missing values imputed with the fitted matrix $\hat{\mu}^{\ell}=U^{\ell} D^{\ell} V^{\ell \prime}$

Iterative PCA

1. initialization $\ell=0: X^{0}$ (mean imputation)
2. step ℓ :
(a) PCA on the completed data $\rightarrow\left(U^{\ell}, D^{\ell}, V^{\ell}\right) ; k \operatorname{dim}$ kept
(b) $\hat{\mu}^{\mathrm{PCA}}=\sum_{q=1}^{k} d_{q} u_{q} v_{q}^{\prime} \quad X^{\ell}=W \odot X+(1-W) \odot \hat{\mu}^{\ell}$
3. steps of estimation and imputation are repeated
\Rightarrow Overfitting : nb param $\left(U_{n \times k}, V_{k \times p}\right) /$ obs values : k large - NA; noisy
Regularized versions. Imputation is replaced by
$(\hat{\mu})_{\lambda}=\sum_{q=1}^{p}\left(d_{q}-\lambda\right)_{+} u_{q} v_{q}^{\prime} \arg \min _{\mu}\left\{\|W \odot(X-\mu)\|_{2}^{2}+\lambda\|\mu\|_{*}\right\}$
Different regularization : Hastie et.al. (2015) (softimpute), Verbank, J. \& Husson (2013) ; Gavish \& Donoho (2014), J. \& Wager (2015), J. \& Sardy (2014), etc.
\Rightarrow Iterative SVD algo good to impute data (matrix completion, Netflix)
\Rightarrow Model makes sense : data $=$ rank k signal + noise
$X=\mu+\varepsilon \varepsilon_{i j} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ with μ of low rank
(Udell \& Townsend, 2017)

Random forests versus PCA

\Rightarrow Imputation inherits from the method : RF (computationaly costly) good for non linear relationship / PCA linear relation
\Rightarrow Aim is not to impute as well as possible but estimate parameters and their variance (multiple imputation).

Iterative SVD

\Rightarrow Imputation with FAMD for mixed data :

\Rightarrow Multilevel imputation : hospital effect with patient nested in hospital.
(J., Husson, Robin \& Balasu., 2018, Imputation of mixed data with multilevel SVD. JCGS)
package MissMDA.

Imputation methods : conditional model

Imputation with fully conditional specification (FCS). Impute with a joint model defined implicitely through the conditional distributions (mice).
\Rightarrow Imputation model for each variable is a forest.

1. Initial imputation : mean imputation - random category
2. for t in $1: T$ loop through iterations t
3. for j in $1: p$ loop through variables j

Define currently complete data set except $X_{-j}^{t}=\left(X_{1}^{t}, X_{j-1}^{t}, X_{j+1}^{t-1}, X_{p}^{t-1}\right)$, then X_{j}^{t} is obtained by

- fitting a RF $X_{j}^{\text {obs }}$ on the other variables X_{-j}^{t}
- predicting $X_{j}^{\text {miss }}$ using the trained RF on X_{-j}^{t}
package missForest (Stekhoven \& Buhlmann, 2011)

Mechanism

$\mathbf{M}=\left(M_{1}, \ldots, M_{d}\right):$ indicator of missing values in $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$.
Missing value mechanisms (Rubin, 1976)
MCAR $\quad \forall \phi, \forall \mathbf{m}, \mathbf{x}, g_{\phi}(\mathbf{m} \mid \mathbf{x})=g_{\phi}(\mathbf{m})$
MAR $\forall \phi, \forall i, \forall \mathbf{x}^{\prime}, o\left(\mathbf{x}^{\prime}, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right) \Rightarrow g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}^{\prime}\right)=g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}_{i}\right)$ (e.g. $\left.g_{\phi}((0,0,1,0) \mid(3,2,4,8))=g_{\phi}((0,0,1,0) \mid(3,2,7,8))\right)$

MNAR Not MAR
\rightarrow useful for likelihoods
Missing value mechanisms - variable level

MCAR $\quad \mathbf{M} \Perp \mathbf{X}$

MAR (bis) $\forall \mathcal{S} \subset\{1, \ldots, d\},\left(M_{j}\right)_{j \in \mathcal{S}} \Perp\left(X_{j}\right)_{j \in \mathcal{S}} \mid\left(X_{k}\right)_{k \in \mathcal{S}^{c}}$ MNAR Not MAR
\rightarrow useful for our results

Parametric estimation

Let $\mathbf{X} \sim f_{\theta^{\star}}$.

Observed log-likelihood $\quad \ell_{\text {obs }}(\theta)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})$.
(inspired by Seaman 2013)

Example

$$
\begin{aligned}
X_{1}, X_{2} & \sim f_{\theta}\left(x_{1}\right) g_{\theta}\left(x_{2} \mid x_{1}\right) \\
M_{1,2}, \ldots, M_{r, 2} & =1 \\
\ell_{\mathrm{obs}}(\theta) & =\sum_{i=1}^{r} \log f_{\theta}\left(x_{1}\right)+\sum_{i=r+1}^{n} \log f_{\theta}\left(x_{1}\right) g_{\theta}\left(x_{2} \mid x_{1}\right) .
\end{aligned}
$$

Parametric estimation

Let $\mathbf{X} \sim f_{\theta^{\star}}$.

Observed log-likelihood $\quad \ell_{\text {obs }}(\theta)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{\mathbf{i}}, \mathbf{m}_{i}\right)}(\mathbf{x})$.

Full log-likelihood $\quad \ell_{\text {full }}(\theta, \phi)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}\right) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})$.

Theorem (Theorem 7.1 in Rubin 1976)

θ can be infered from ℓ_{obs}, assuming MAR.

Ignorable mechanism

Full log-likelihood:

$$
\ell_{\text {full }}(\theta)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}\right) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})
$$

Observed log-likelihood:

$$
\ell_{\mathrm{obs}}(\theta)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})
$$

Assuming MAR,

$$
\begin{aligned}
\ell_{\text {full }}(\theta, \phi) & =\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}_{i}\right) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x}) \\
& =\ell_{\mathrm{obs}}(\theta)+\sum_{i=1}^{n} \log g_{\phi}\left(\mathbf{m}_{i} \mid \mathbf{x}_{i}\right)
\end{aligned}
$$

Parametric estimation

Let $\mathbf{X} \sim f_{\theta^{\star}}$.

Observed log-likelihood

$$
\ell_{\text {obs }}(\theta)=\sum_{i=1}^{n} \log \int f_{\theta}(\mathbf{x}) \mathrm{d} \delta_{o\left(\cdot, \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})
$$

EM algorithm (Dempster, 1977)
Starting from an initial parameter $\theta^{(0)}$, the algorithm alternates the two following steps,
(E-step) $\quad Q\left(\theta \mid \theta^{(t)}\right)=\sum_{i=1}^{n} \int\left(\log f_{\theta}(\mathbf{x})\right) f_{\theta(t)}(\mathbf{x}) \mathrm{d} \delta_{o\left(, \cdot \mathbf{m}_{i}\right)=o\left(\mathbf{x}_{i}, \mathbf{m}_{i}\right)}(\mathbf{x})$.
(M-step) $\quad \theta^{(t+1)} \in \underset{\theta \in \Theta}{\operatorname{argmax}} Q\left(\theta \mid \theta^{(t)}\right)$.
The likelihood is guaranteed to increase.

Missing values

$\widetilde{\mathbf{X}}=\mathbf{X} \odot(\mathbf{1}-\mathbf{M})+N A \odot \mathbf{M}$ takes value in $\mathbb{R} \cup\{N A\}$
The (unobserved) complete sample $\mathcal{D}_{n}=\left(\mathbf{X}_{i}, \mathbf{M}_{i}, Y_{i}\right)_{1 \leq i \leq n} \sim(\mathbf{X}, \mathbf{M}, Y)$

$$
d_{n}=\left[\begin{array}{lllllllll}
2 & 3 & 1 & 0 & 0 & 0 & 1 & 0 & 15 \\
1 & 0 & 3 & 5 & 0 & 1 & 0 & 0 & 13 \\
9 & 4 & 2 & 5 & 0 & 0 & 0 & 1 & 18 \\
7 & 6 & 3 & 2 & 0 & 0 & 1 & 1 & 10
\end{array}\right],
$$

The observed training set $\widetilde{\mathcal{D}}_{n, \text { train }}=\left(\widetilde{\mathbf{X}}_{i}, Y_{i}\right)_{1 \leq i \leq n}$

$$
\widetilde{d}_{n}=\left[\begin{array}{ccccc}
2 & 3 & \mathrm{NA} & 0 & 15 \\
1 & \mathrm{NA} & 3 & 5 & 13 \\
9 & 4 & 2 & \mathrm{NA} & 18 \\
7 & 6 & \mathrm{NA} & \mathrm{NA} & 10
\end{array}\right] .
$$

Split on available observations

\Rightarrow Biais in variable selection : tendency to underselect variables with missing values (favor variables where many splits are available)
\Rightarrow Conditional tree (Hothorn, 2006) Ctree selects variables with a test

$$
\left\{\begin{aligned}
X_{1} \Perp X_{2} & \sim \mathcal{N}(0,1) \\
Y & =0.25 X_{1}+\varepsilon \text { with } \varepsilon \sim \mathcal{N}(0,1)
\end{aligned}\right.
$$

Frequency of selection of X_{1} when there are missing values on X_{1} :

CART selects the non-informative variable X_{2} more frequently

Split comparison

$$
\left\{\begin{array}{l}
Y=X_{1} \\
X_{1} \sim U([0,1])
\end{array}, \quad\left\{\begin{array}{l}
\mathbb{P}\left[M_{1}=0\right]=1-p \\
\mathbb{P}\left[M_{1}=1\right]=c
\end{array}\right.\right.
$$

The best split CART $s^{\star}=1 / 2$
The split chosen by the MIA

Risk comparison

Consider the regression model
$\left\{\begin{array}{l}Y=X_{1} \\ X_{1} \sim U([0,1]) \\ X_{2}=X_{1} \mathbb{1}_{W=1}\end{array}, \quad\left\{\begin{array}{l}\mathbb{P}[W=0]=\eta \\ \mathbb{P}[W=1]=1-\eta\end{array}, \quad\left\{\begin{array}{l}\mathbb{P}\left[M_{1}=0\right]=1-p \\ \mathbb{P}\left[M_{1}=1\right]=0\end{array}\right.\right.\right.$,
where $\left(M_{1}, W\right) \Perp\left(X_{1}, Y\right)$.

$\begin{array}{ll}\text { _- Probabilistic split } & \text { MIA } \\ \text { _- Block propagation } & \text { Surrogate splits }\end{array}$

Research activities

- Dimensionality reduction methods to visualize complex data (PCA based) : multi-sources, textual, arrays, questionnaire
- Low rank estimation, selection of regularization parameters
- Missing values - matrix completion
- Causal inference
- Fields of application : bio-sciences (agronomy, sensory analysis), health data (hospital data)
- R community : book R for Stat, R foundation, taskforce, packages : FactoMineR explore continuous, categorical, multiple contingency tables (correspondence analysis), combine clustering and PC, ..
MissMDA for single and multiple imputation, PCA with missing denoiseR to denoise data with low-rank estimation
R -miss-tastic missing values plateform

