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Research topics:

. Dimensionality reduction to visualize high dimensional heterogeneous data

. Missing values: supervised learning, inference, matrix completion, MNAR

. Causal inference: estimating treatment effect, combining RCT &

observational data, personalized recommendation

. Medical collaborations: Critical care, Inst. Gustave Roussy, etc.

Implementations: R community

. book R for Stat., Elected member R foundation, Founding of Rforwards to

increase minority participation, packages: FactoMineR (4 500

download/day, > 5 million in total, >7000 citations), Rmisstastic, taskviews 2
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https: //forwards.github.io/
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PreMeDICaL research axes

Personalized medicine by integration of different data sources

. relationship between data sources (relevance of each source?)

. solutions to handle complexe structure of missing values

. confidence in ML/AI algo. (uncertainty quantification - conformal)

. federated learning, privacy

⇒ Translate research into clinically actionable solutions

⇒ Push methodological innovation up to patients, clinicians, regulators

⇒ Leverage ML, data, clinical expertise & existing recommendations 3



Data integration comes with methodological challenges

Clinical Data Biological Data Questionnaire on lifestyle

X1 .... Xp W Y Z1 ..... Zq .... C1 ... Cr
1 NA ....

Obs

Hospital 1
NA NA ...

NA ...

n1 NA NA ...

1 NA NA ... NA NA

Obs

Hospital 2
NA NA NA NA NA NA NA ...

NA NA ... NA NA NA

n2 NA NA ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1 NA NA NA ... NA

Obs

Hospital K
NA ... NA

NA .... NA

nK NA .... NA

State-of-the-art ML/causal methods struggle with high dimensional

multi-sources data with distributional shifts & missing data

(systematic/sporadic)
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PreMeDICaL research axes

Personalized medicine by integration of different data sources

. relationship between data sources (relevance of each source?)

. solutions to handle complexe structure of missing values

. confidence in machine learning: uncertainty quantification

. federated learning, privacy

Personalized medicine by optimal prescription of treatment

. causal inference techniques for (dynamic) policy learning

⇒ who to treat and when

. leverage both randomized control trials (RCTs) and observational data

⇒ launch a drug without running RCTs

⇒ rethink evidence needed to bring treatments to the market faster

⇒ Translate research into clinically actionable solutions

⇒ Push methodological innovation up to patients, clinicians, regulators

⇒ Leverage ML, data, clinical expertise & existing recommendations
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Traumabase: an observational French registry on trauma1

. 40000 patients

. 250 continuous and categorical variables

. 40 trauma centers

. 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP TXA. Y

Beaujon fall 54 m 85 NM 180 treated 0

Pitie gun 26 m NR NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NR Imp 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Explain and Predict hemorrhagic shock given pre-hospital features.

Ex: logistic regression/ random forests with covariates with missing values

Clinical Trial: real-time testing of models in the ambulance via a mobile data

collection application (ShockMatrix Google play)

1www.traumabase.eu - https://www.traumatrix.fr/
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HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect: Administration of the treatment tranexamic acid

(TXA), given within 3 hours of the accident, on the outcome 28 days intra

hospital mortality for trauma brain patients

Causal inference with covariates with missing values (implemented in the R
package grf). 2020. Mayer, I., Wager, S. & J.J. Doubly robust treatment effect estimation

with incomplete confounders. Annals Of Applied Statistics.

⇒ Explain and Predict hemorrhagic shock given pre-hospital features.

Ex: logistic regression/ random forests with covariates with missing
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Clinical Trial: real-time testing of models in the ambulance via a mobile

data collection application (ShockMatrix Google play)
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Data sources and evidence at hand for the effect of TXA 3

CRASH3

. Multi-centric RCT - 29 countries

. 9000 individuals - develp. countries

. No evidence for a TXA effect

(positive effect for moderate

injured patients)

Traumabase

. Observational sample

. 8200 patients with brain trauma

. Slightly negative effect of TXA/ no

evidence

Is this expected? Is there a paradox?

. Treatment and outcome are not exactly the same2

. Traumabase may suffer from unobserved confounding - missing values

. Populations are different

2Lodi, Hernán et al. (2019). Effect Estimates in Randomized Trials and Observational Studies:

Comparing Apples With Apples. Am J Epidemiol.
3 (2019). Effects of tranexamic acid on death in patients with acute trauma. brain injury. Lancet.

7
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Leverage both RCT and observational data

RCT

+ No confounding

− Trial sample different from the population

eligible for treatment

(big) Observational data

− Confounding

+ Representative of the target

population

We could use both to 4 . . .

. . . . validate observational methods, correct confounding bias

. . . . improve estimation of heterogeneous treatment effects

. . . . generalize the treatment effect to a target population (data

fusion, transportability, recovery from selection biais)5,6

The FDA has greenlighted the usage of the drug Ibrance to men with

breast cancer, though clinical trials were performed only on women.

→ Reduce drug approval times and costs for patients who could benefit

4Colnet, J.J. (2022). Causal inference for combining RCT & obs. studies. Statistical Science.
5Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
6Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernán. (2021). Study Designs for

Extending Causal Inferences From a RCT to a Target Population American J. of Epidemiology.
8
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Generalization task from a RCT to a target population

Two data sources:

. A trial of size n with pR (x) the

probability of observing individual

with X = x ,

. A sample of the target population

of interest – for e.g. a national co-

hort (resp. m and pT (x)).

Covariates distribution not the same in the RCT & target pop:

pR(x) 6= pT(x)⇒ τR := ER[Y (1)− Y (0)]︸ ︷︷ ︸
ATE in the RCT

6= ET[Y (1)− Y (0)] := τT︸ ︷︷ ︸
Target ATE

9
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Assumptions for ATE identifiability in generalization

Transportability (Ignorability on trial participation)7

∀w ∈ {0, 1} ER[Y (w) | X ] = ET[Y (w) | X = x ]

Corresponds to shifted prognostic variables

Overlap assumption8

∀x ∈ X, pR(x) > 0 and supp(PT (X )) ⊂ supp(PR(X ))

The observational covariates support is included in the RCT’s support. Every

individual in the target population could have been selected into the trial

7Equivalent formulation with sampling mechanism S (S = 1 trial eligibility & willingness to

participate) in non-nested design, {Y (1),Y (0)} ⊥⊥ S | X
8If this is too strong, we could generalize on a different target population: the target population

for which eligibility criteria of the trial are ensured

10
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Generalization of conditional outcome: identifiability

Set S X1 X2 X3 W Y (0) Y(1)

1 R 1 1.1 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3 ?

n R 1 0 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA

n + 2 O ?(1) -1 35 2.4 NA NA NA

. . . O ?(0) . . . NA NA NA

n + m O ?(1) -2 22 3.4 NA NA NA

Set S X1 X2 X3 W Y

1 R 1 1.1 20 5.4 1 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O NA -2 52 7.1 NA NA

n + 2 O NA -1 35 2.4 NA NA

. . . O NA . . . NA NA

n + m O NA -2 22 3.4 NA NA

Data with observed treatment W and outcome Y only in the RCT.

Average Treatment Effect: τT = ET[Yi (1)− Yi (0)],∀w ∈ {0, 1}

ET [Y (1)] = ET [ET [Y (1) | X ]] Law of total expectation

= ET [ER [Y (1) | X ]] Ignorability

= ET [ER[Y (1) | X = x ,W = 1]] Random treatment

= ET [ER[Y | X = x ,W = 1]]︸ ︷︷ ︸
µ1(x)

ConsistencyY = Y (1)W + (1−W )Y (0)

Regression adjustment - plug-in gformula

τ̂g ,n,m =
1

m

∑
i∈T

(µ̂1,n(Xi )− µ̂0,n(Xi ))

11
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Plug-in gformula: difference between conditional mean

Plug-in gformula

τ̂g ,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

µw (x) = ER[Y | X = x ,W = w ]

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 9.4 1 24.1

R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• Fit two models of the outcome (Y ) on covariates (X )

among trial participants (R) for treated and for control to get µ̂1,n & µ̂0,n

• Apply these models to the covariates in the target pop , i.e., marginalize

over the covariate distribution of the target pop, gives the expected outcomes

• Compute the differences between the expected outcomes on the target

population µ̂1,n(·) - µ̂0,n(·)

12
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O ? . . . . . . . . . . . .
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Assumptions for identifiability with fewer covariates

Transportability (Ignorability on trial participation)9

∀w ∈ {0, 1} ER[Y (w) | X ] = ET[Y (w) | X = x ]

Corresponds to shifted prognostic variables

Transportability of the CATE10

τR(X )︸ ︷︷ ︸
ER[Y (1)−Y (0)|X ]

= τT(X )︸ ︷︷ ︸
ET[Y (1)−Y (0)|X ]

Corresponds to shifted treatment effect modifiers

9Equivalent formulation with sampling mechanism S (S = 1 trial eligibility & willingness to

participate) in non-nested design, (Y (1),Y (0)) ⊥⊥ S | X
10Equivalent formulation with sampling mechanism S: (Y (1)− Y (0)) ⊥⊥ S | X

13
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Identifiability and estimation for generalization: weighting

Generalization of local effects11

τT = ET[Yi (1)− Yi (0)] = ET[ET[Yi (1)− Yi (0)|X ]]

= ET [τT(X )] = ET [τR(X )] Transportability CATE

= ER

[
pT(X )

pR(X )
τR(X )

]
IPSW: inverse propensity sampling weighting12

τ̂IPSW ,n,m =
1

n

∑
i∈R

p̂T(Xi )

p̂R(Xi )

(
WY

eR(x)
− (1−W )Y

1− eR(x)

)
,

eR(x) = P(W = 1 | X = x)(= π = 0.5.)

Re-weight, so that the trial follows the target sample’s distribution: if

proba to be in trial when old is small, then up-weight old in trial

. Re-weighting can be found in the 2000’s (standardization, Rothman & Greenland)

. But the idea of relying on an external representative sample is recent
11When the measure is collapsible
12Cole & Stuart. (2010). Generalizing evidence from RCT to target pop.. American J. of

Epidemiology.

14



Generalization estimators: illustrative schematics

The trial findings τ̂R,n would over-estimate the target treatment effect τT
Left: the plug-in G-formula model the response using the RCT observation

Right: IPSW weight the RCT observations

fX (fX|S=1) density of the target (resp. trial) pop., µ̂w,n(·) fitted response surface with n trial obs.

Theorem - consistency13

Under assumptions, τ̂IPSW,n,m and τ̂g,n,m converges toward τT in L1 norm,

τ̂IPSW,n,m
L1

−→
n,m→∞

τT

τ̂g,n,m
L1

−→
n,m→∞

τT

13Colnet, J.J et al. 2022. Generalizing a causal effect: sensitivity analysis and missing covariates.

Journal of Causal Inference.
15



Generalization from Crash 3 trial to the Traumabase

Comparison of trials, observational data, and generalization estimates

Confidence intervals obtained with stratified bootstrap

x-axis: Estimat. of the ATE (×100), bootstrap CI

y -axis: Methods - parametric: logistic regression or non parametric forests for nuisances

Missing values handled with multiple imputation MI or missing incorportaed in attributes MIA for

forests

16



Many medical and statistical challenges

• 1) Shifted effect modifiers not available in Traumabase14. Missing covariates

in one/both sets: sensitivity analysis

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

Difficult to give sensitivity parameters, semi-parametric model (linear CATE),

shift on means, sensitivity plot for one missing variable, etc.

• 2) Missing values: Missing values in both RCT and Obs data15

• 3) Effect of finite sample? Which covariate to include? Would adding

prognostic variables reduce the variance as in the classical case?16

14Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. J. of Causal Inference.
15Mayer, J.J. 2021. Generalizing effects with incomplete covariates Biometrical Journal.
16Colnet, J.J et al. 2022. Reweighting the RCT for generalization: finite sample analysis and

variable selection. In revision JRSSC. 17
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Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

Difficult to give sensitivity parameters, semi-parametric model (linear CATE),

shift on means, sensitivity plot for one missing variable, etc.

• 2) Missing values: Missing values in both RCT and Obs data15

• 3) Effect of finite sample? Which covariate to include? Would adding

prognostic variables reduce the variance as in the classical case?16
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Reweighting the RCT: finite sample & asymptotic analysis17

τ̂π,n,m =
1

n

∑
i∈R

Estimated with T︷ ︸︸ ︷
p̂T(Xi )

p̂R(Xi )︸ ︷︷ ︸
Estimated with R

Yi

(
Wi

π
− 1−Wi

1− π

)
,

Asymptotic properties - completely estimated

Letting lim
n,m→∞

m/n = λ ∈ [0,∞]

lim
n,m→∞

min(n,m) Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X )]

λ
+ Vso

)
Variance depends on the size of the two data sets, n and m

. If target >> trial, m/n → ∞, (i.e., λ = ∞): asymptotic variance =

Semi-Oracle’s one and depends on the ratio of proba.

. If trial >> target m/n → 0, (i.e., λ = 0): asymptotic variance

depends on Var [τ(X )].

17Colnet, J.J et al. 2022. Reweighting the RCT for generalization: finite sample analysis and

variable selection. In revision JRSSC.
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p̂T(Xi )

p̂R(Xi )︸ ︷︷ ︸
Estimated with R

Yi

(
Wi

π
− 1−Wi

1− π

)
,

• Adding shifted and independent covariates: loss in variance

• Adding non-shifted treatment effect modifiers: gain in variance

17Colnet, J.J et al. 2022. Reweighting the RCT for generalization: finite sample analysis and

variable selection. In revision JRSSC.
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Generalization from Crash 3 trial to the Traumabase

Comparison of trials, observational data, and generalization estimates

Confidence intervals obtained with stratified bootstrap

. 1) Shifted effect modifiers not available in Traumabase18

. 2) Missing values in both RCT and Obs data19

. 3) Effect of finite sample? Which covariate to include? Would adding

prognostic variables reduce the variance as in the classical case?20

. 4) Clinicians rather interested in the ratio than the difference

18Colnet, J.J. 2022. Generalizing a causal effect: sensitivity analysis, Journal of Causal Inference.
19Mayer, J.J. 2021. Generalizing effects with incomplete covariates Biometrical Journal.
20Colnet, J.J. 2022. Reweighting the RCT for generalization: finite sample analysis & variable

selection. Submitted.
19



Risk ratio, odds 
ratio, risk 
difference
Which causal measure is 
easier to generalize?



Comparing two average situations

Binary outcome: P [Y (w) = 1] = E [Y (w)] and P [Y (w) = 0] = 1− E [Y (w)].

Absolute measures

τ RD := E [Y (1)]− E [Y (0)] , τNNT := τ RD
−1.

• Number Needed to Treat (NNT): how many individuals should be treated

to observe one individual answering positively to treatment.

Relative measures

τ RR :=
E [Y (1)]

E [Y (0)]
, τ SR :=

P [Y (1) = 0]

P [Y (0) = 0]
=

1− E [Y (1)]

1− E [Y (0)]
,

τOR :=
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

• A null effect now corresponds to a Risk Ratio of 1

• Survival Ratio (SR) corresponds to the RR with swapped labels Y

• RR is not symmetric to the choice of outcome 0 and 1 –e.g. counting the

living or the dead while Odds Ratio (OR) is

20



Different treatment measures give different impressions

RCT from Cook and Sackett (1995)

• Y = 1 stroke in 5 years and Y = 0 no stroke

• X = 1 low baseline risk P [Y (0) = 1 | X = 0] ≥ P [Y (0) = 1 | X = 1]

τRD τRR τSR τNNT τOR

All (PR) −0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

• RD: treatment reduces by 0.045 the probability to suffer from a stroke

• RR: the treated has 0.6 × the risk of having a stroke comp. with the control

• SR: there is an increased chance of not having a stroke when treated

compared to the control by a factor 1.05.

• NNT: one has to treat 22 people to prevent one additional stroke

• OR ≈ RR in a stratum where prevalence of the outcome is low

• RD is heterogeneous with X while RR is homogeneous with X

⇒ Heterogeneity’s property defined w.r.t. (i) covariates & (ii) a measure
21



The age-old question of how to report effects

60

`` We wish to decide whether we shall count the failures or the successes and 
whether we shall make relative or absolute comparisons”


— Mindel C. Sheps, New England Journal of Medicine, in 1958
Source: Wikipedia

The choice of the measure is still actively discussed


e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 
2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 …


— CONSORT guidelines recommend to report all of them



A desirable property collapsibility

i.e. population’s effect is equal to a weighted sum of local effects

Simpson paradox:

(a) Overall population,

τOR ≈ 0.26

Y=0 Y=1

A=1 1005 95

A=0 1074 26

(b) τOR|F=1 ≈ 0.167 and τOR|F=0 ≈ 0.166

F= 1 Y=0 Y=1 F=0 Y=0 Y=1

A=1 40 60 A=1 965 35

A=0 80 20 A=0 994 6

Marginal effect larger than subgroups’ effects

Unfortunately, not all measures are collapsible

22



Writting marginal effect as a weighed sum of conditional effects

Direct collapsibility

E [τ(X )] = τ

⇒ RD directly collapsible:

τ RD

R = pR(X = 1)× τ RD

R (X = 1) + pR(X = 0)× τ RD

R (X = 0)

Ex: 0.0452 = −0.47× 0.006− 0.53× 0.08

Weights are equal to the population’s proportions

Useful for generalization! (replacing pR by pT)

Collapsibility (require knowing Y (0))

E [w(X ,P(X ,Y (0))) τ(X )] = τ

⇒ RR collapsible:

E
[
τRR(X )

E [Y (0) | X ]

E [Y (0)]

]
= τRR
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Measures’ properties

Direct collapsibility

E [τ(X )] = τ

Collapsibility (require knowing Y (0))

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

Logic respecting

τ ∈
[
min
x

(τ(x)),max
x

(τ(x))
]
.

Measure Collapsible Logic-respecting

Risk Difference (RD) Yes Yes

Number Neeeded to Treat (NNT) No Yes

Risk Ratio (RR) Yes Yes

Survival Ratio (SR) Yes Yes

Odds Ratio (OR) No No
24



Non parametric generative models

Continuous outcome

Assuming that E
[
|Y (1)|

∣∣X ] <∞ and E
[
|Y (0)|

∣∣X ] <∞
Y (0) = f (0,X ) + ε0, with f (0,X ) = E [Y (0) | X ]

Y (1) = f (1,X ) + ε1, with f (1,X ) = E [Y (1) | X ]

Y (w) = f (0,X )︸ ︷︷ ︸
:=b(X )

+w (f (1,X )− f (0,X ))︸ ︷︷ ︸
:=m(X )

+ wε1 + (1− w)ε0︸ ︷︷ ︸
:=εw

.

Additive decomposition

Y (w) = b(X ) + w m(X ) + εw ,

Baseline b(X ) := E[Y (0) | X ]

Modification m(X ) := E[Y (1)− Y (0) | X ]

E [εw | X ] = 0
Spirit of Robinson’s decomposition (1998), also in Nie et al. (2020)

25



Linking models and causal measures

Nonparametric generative model, continuous outcome

Y (w) = b(X ) + w m(X ) + εw ,

Baseline b(X ) := E[Y (0) | X ]

Modification m(X ) := E[Y (1)− Y (0) | X ]

τ RD = E [m(X )] , τ RR = 1 +
E [m(X )]

E [b(X )]

• With RR, baseline b(X ) is entangled with effect m(X )

• RD independent of baseline 26



Linking models and causal measures

Ex. of the Russian Roulette: Harmful ”homogeneous” treatment effect

Nonparametric generative model, binary outcome

P [Y (w) = 1 | X = x ] = b(x) + w (1− b (x))︸ ︷︷ ︸
Entanglement

1

6
.

Baseline b(X ) := P [Y (0) = 1 | X = x ]

τ RD =
1

6
(1− E [b(x)]) , τSR = 1− 1

6

• With RD, baseline b(X ) is entangled with effect 1/6

• SR independent of baseline
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P [Y (w) = 1 | X = x ] = b(x) + w (1− b (x))︸ ︷︷ ︸
Entanglement

1

6
.

Baseline b(X ) := P [Y (0) = 1 | X = x ]

τ RD =
1

6
(1− E [b(x)]) , lim

E[b(x)]→1
τRD = 0. τSR = 1− 1

6

• With RD, baseline b(X ) is entangled with effect 1/6

• SR independent of baseline
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Linking models and causal measures

Heterogeneous treatment effect

Nonparametric generative model, binary outcome

mg (x) := P [Y (1) = 0 | Y (0) = 1,X = x ] , mb(x) := P [Y (1) = 1 | Y (0) = 0,X = x ] ,

P [Y (w) = 1 | X = x ] = b(x) +w (1− b (x))mb (x)︸ ︷︷ ︸
↗

−w b (x)mg (x)︸ ︷︷ ︸
↘

,

A beneficial effect (mb(x) = 0) is visible on a high baseline (b(x) ≈ 1).

A deleterious effect (mg (x) = 0) is visible on low baseline (1− b(x) ≈ 1)

Disantanglement of treatment effect and baseline

Assuming that the treatment is beneficial (i.e. ∀x ,mb(x) = 0),

τRR(x) = 1−mg (x).

Computing group effects on X affecting b(.): constant effect

Harmful effect: conditional SR (like the Russian Roulette)

Beneficial effect: conditional RR
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Back to generalizability

Aim: transport trial finding’s to a target population, using the trial data

and a sample of the target population

29



Back to generalizability

Generalizing Conditional Outcome Local effects

Assumption ER[Y (w) | X ] = ET[Y (w) | X = x ] τR(X ) = τT(X )

Unformal All shifted prognostic covariates All shifted effect modifiers

Identification ET [Y (w)] = ET [ER [Y (w) | X ]] ER

[
pT(X )
pR(X )

gT(Y (0),X ) τR(X )
]

• Depending on the assumptions, either conditional outcome or local treatment

effect can be generalised

• Generalizing local effects only for collapsible measure, information on Y (0)

with weights required

30



Generalize local effect: Y binary and a beneficial effect

Different covariates sets are required to retrieve the target population

effect depending on

• (i) the causal measure

• (ii) the nature of the outcome (continuous, binary),

• (iii) the method to generalize (conditional outcome or local effect).
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Simulations: continuous outcome

Y = b (X1,X2,X3,X4,X5,X6) + W m (X1,X2,X5) + ε.

X1, . . .X4 shifted. Linear setting

• RD can be generalized with only X1,X2

• Generalizing conditional outcome & local effects similar

• Adding prognostic variables improve precisions
32



Simulations: binary outcome

P [Y (w) = 1 | X = x ] = b(X1,X2,X3) + a (1− b (X1,X2,X3)) mb(X2,X3),

X1 = lifestyle, X2 = stress, X3 = gender; gender not shifted

• SR can generalize with Stress only when generalizing local effects

33



Conclusion: many medical and statistical challenges

Some measures are easier to generalize (i.e. needs less covariates to adjust on):

less sensitive to a population’s shift

Summary

. Collapsibility is an important property

. Generalize by conditional outcomes requires shifted prognostic var.

. Generalize by local effects requires shifted treatment effect modifiers

. Continuous outcome: RD depends on the modification

. Binary outcome: Conditional SR for harmful, RR for beneficial effect

On going

. Estimation strategies to estimate/generalize the RR

. Insights from/Impact for Meta Analyses

. Usefulness of the model - both beneficial and harmful...

. Methods used are methods implemented. Taskview on causal inference 21

. Federated causal inference

. Logistic (non parametric) regression model - Constant conditional OR

21https://cran.r-project.org/web/views/CausalInference.html
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Real-world data can help strengthen clinical evidence

RCT 1
X1 X2 X3 X4 X5 W Y

RCT 2
X1 X2 X3 X4 X5 X6 W Ÿ

OBSERVATIONAL DATA A
X1 X2 X3 X4 X5 X6 X7 X8 W Y

Ho
sp

ita
l 1

Ho
sp

ita
l 2

Ho
sp

ita
l 3

OBSERVATIONAL DATA B
X1 X2 X3 X4 X5 X6 X7 X8 OBSERVATIONAL DATA C

X1 X2 X3 X4 X5 X6 X7 X8 AUXILIARY DATA
S1 S2 S3 S4

TARGET 
POPULATION

TREATMENT
ESTIMATE(S)

NEW PATIENTS TO TREAT
X1 X2 X3 X4 X5 X6 X7 X8 W

black correspond to sporadically & systematic missing covariates
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Resources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

J., I. Mayer, N. Tierney & N. Vialaneix

Project funded by the R consortium (Infrastructure Steering

Committee)22

Aim: a reference platform on the theme of missing data management

. list existing packages

. available literature

. tutorials

. analysis workflows on data

. main actors

⇒ Federate the community

⇒ Contribute!
22https://www.r-consortium.org/projects/call-for-proposals
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Semi-synthetic simulation

. All the results are illustrated on semi-synthetic simulations;

. Build from two large clinical data bases, reflecting a real-world situation
� CRASH3 ∼ 9 000 individuals.

� Traumabase ∼ 30 000 individuals.

. The outcome is the only synthetic part,

Y := f (GCS, Gender) + A τ(TTT, Blood Pressure) + εTTT,

More precisely,

Y = 10− Glasgow + (if Girl:− 5 else:0)

+ A
(
15(6− TTT) + 3 ∗ (Systolic.blood.pressure− 1)2

)
+ εTTT,

where εTTT is a random Gaussian noise with a standard deviation

depending on the value of the covariate TTT.
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Results from the semi-synthetic simulation

. Reduced variance for

IPSW fully estimated

(π is also estimated).

. The re-weighted trial

has not necessarily a

larger variance.
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Results from the semi-synthetic simulation
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Papier:

Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available 

Miguel A. Hernán* and James M. Robins * 

Correspondence to Dr. Miguel A. Hernán, Department of Epidemiology, 677 Huntington Avenue, Boston, 
MA 02115 (e-mail: miguel_hernan@post.harvard.edu). Initially submitted December 9, 2014; accepted 
for publication September 8, 2015.
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Protocol 
component

CRASH2 CRASH3 Traumabase

Eligibility criteria Adult trauma patients with, or at 
risk of, significant bleeding who 
were within 8 hours of injury.

Adults with TBI who were within 3 h of injury, 
had a Glasgow Coma Scale (GCS) score of 
12 or lower or any intracranial bleeding on CT 
scan, and no major extracranial bleeding

Patients of age ≥ 16 years. Until 
2019, the treatment TXA was only 
recommended for patients with 
hemorrhage (external or internal) 
and not specifically for TBI (which is 
not necessarily caused by 
intracranial hemorrhage)

Treatment 
strategies

Tranexamic acid (loading dose 1 
g over 10 minutes then infusion of 
1 g over 8 hours)

TXA (loading dose 1 g over 10 min then 
infusion of 1 g over 8 h) in less than 3 hours 
after injury

TXA is given before/at entry in the 
hospital in case of extracranial 
bleeding, time and dose are not 
registered

Assignment 
procedures

Participants are randomized (1:1) Participants are randomized (1:1) Observational study

Follow-up period 28 days after accident 28 days after accident 28 days after accident

Outcome Death in hospital within 4 weeks 
of injury

Head injury-related death in hospital within 28 
days of injury 

Head injury-related death within 28 
days of injury

Causal contrasts of 
interest

Intention-to-treat effect Intention-to-treat effect Intention-to-treat effect
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TBI is a complex condition caused by severe trauma (e.g. in an accident) and it can be assumed that the 
severity of TBI is determined/fixed early after the accident i.e., the severity of TBI is “hard coded” once 
TBI occurs and the following treatments won’t affect the severity, they only affect the chances of survival 
or other functional outcomes conditionally on the TBI severity. 

In theory TBI severity could be assessed quickly after its occurrence (at the scene of the accident). But it 
is assessed and treated only at the hospital, once the patient is stable enough (i.e. without ongoing 
strong hemorrhage) to be placed in a CT scan. 

One of the limit when combining data or comparing evidence is that TBI is not assessed in the same way 
in the different data set
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Causal inference23

Causal inference (simplest) question

Assume a policy/intervention/treatment W causes an outcome Y

Aim: estimate the effect as acurately as possible (bias & variance)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

23Taskview to organize all packages on causal inference.
45
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Causal inference23

Potential Outcome framework (Neyman, 1923; Rubin, 1974)

. n iid sample ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Wi , Yi (1),Yi (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

. Individual causal effect of the binary treatment: ∆i = Yi (1)− Yi (0)

Problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

23Taskview to organize all packages on causal inference. 45

https://cran.r-project.org/web/views/CausalInference.html
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The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

23Taskview to organize all packages on causal inference. 45

https://cran.r-project.org/web/views/CausalInference.html


Randomized Controlled Trial

Identifiability assumptions

. Yi = WiYi (1) + (1−Wi )Yi (0) (consistency)

. Wi ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We can check that τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Wi = 1]− E[Yi (0)|Wi = 0]

= E[Yi |Wi = 1]− E[Yi |Wi = 0]

⇒ Although ∆i never observe, τ is identifiable and can be estimated

Difference-in-means estimator

τ̂DM =
1

n1

∑
Wi=1

Yi −
1

n0

∑
Wi=0

Yi , where nw =
n∑

i=1

1Wi=w

τ̂DM unbiased and
√
n-consistent

√
n (τ̂DM − τ)

d−−−→
n→∞

N (0,VDM)
46



Randomized Controlled Trial

Identifiability assumptions

. Yi = WiYi (1) + (1−Wi )Yi (0) (consistency)

. Wi ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We can check that τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Wi = 1]− E[Yi (0)|Wi = 0]

= E[Yi |Wi = 1]− E[Yi |Wi = 0]

⇒ Although ∆i never observe, τ is identifiable and can be estimated

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

τ̂DM = 1
n1

∑
Wi=1 Yi − 1

n0

∑
Wi=0 Yi ; ATE = mean(red)-mean(blue) 46



Data sources & evidences to estimate the treatment effect

Randomized Controlled Trial (RCT)

. gold standard (allocation )

. same covariate distributions of

treated and control groups

⇒ High internal validity

. expensive, long, ethical limitations

. small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

. trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

. “big data”: low quality

. lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

. low cost

. large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

. representative of the target

populations

⇒ High external validity
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