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Traumabase: an observational French registry on trauma2

▷ 40000 patients

▷ 250 continuous and categorical variables

▷ 40 trauma centers, 4000 new patients/ year

Center Accident Age Sex Lactate Blood Pres. Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292 000

Pitie gun 26 m NA 131 no 323 000

Beaujon moto 63 m 3.9 NR yes 318 000

Pitie moto 30 w Imp 107 no 211 000
...

. . .

⇒ Explain and Predict hemorrhagic shock, need for neurosurgery and

need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests + Quantify uncertainty1

Clinical trial will be launched end 2024: real-time implementation of

models in the ambulance via a mobile data collection application

1Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
2www.traumabase.eu - https://www.traumatrix.fr/
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Solutions to handle missing values in the covariates

Abundant literature: Creation of Rmistatic platform3 (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. β̂, V̂ (β̂)

to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms4

(Multiple) imputation to get a complete data set. Ex: (M)ICE

Matrix completion aim: Predict the missing values as well as possible.

Solutions: using low rank matrix approximation

Predictive aim: Predict an outcome with missing values in covariates.5,6

Solutions: using deterministic (e.g. constant) imputation or Missing

Incorporated in Attributes for trees based methods (grf package)

3Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
4Jiang, J. et al. Logistic Regression with Missing Covariates CSDA. 2019. - misaem package
5J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024.
6Le morvan, J. et al. What’s a good imputation to predict with missing values? Neurips2021.

https://rmisstastic.netlify.com/
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Single imputation by the mean

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 -1.93

-0.86 -1.50

..... ...

2.16 0.7

0.16 0.74
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ρ = 0.6

µ̂x2 = −0.01

σ̂x2 = 1.01

ρ̂ = 0.66
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Single imputation by the mean

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data
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Mean imputation deforms joint and marginal distributions
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Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution xi2 = β0 + β1xi1 + εi , εi ∼ N (0, σ2)

▷ Regression imputation: Estimate β (here with complete data) and impute

x̂i2 = β̂0 + β̂1xi1 ⇒ variance underestimated and correlation overestimated

▷ Stochastic reg. imputation: Estimate β and σ - impute from the predictive

x̂i2 ∼ N
(
β0 + β̂1xi1, σ̂

2
)
⇒ preserve distributions
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Impute while preserving distribution. Multivariate case

Assuming a joint distribution

▷ Gaussian model xi ∼ N (µ,Σ)

▷ Low rank : Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank

⇒ Different regularization depending on noise regime7

⇒ Count data,8 ordinal data, categorical data, blocks/multilevel data

▷ Optimal transport,9 deep generative models: GAIN,10 MIWAE,11 etc.12 13

Iterating conditional models (joint distribution implicitly defined)

▷ with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations14

▷ iterative imputation of each variable by random forests15

7J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
8Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
9Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.

10Yoon et al. GAIN: Missing data imputation using generative adversarial nets. ICML. 2018.
11Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. ICML. 2018.
12Deng et al. Extended missing data imput. via gans. Data Mining & Knowledge Discovery. 2022.
13 Fang Bao. Fragmgan gan for fragmentary data imputation. Stat.theory & Related Fields. 2023.
14van Buuren, S. Flexible Imputation of Missing Data. Chapman Hall/CRC Press. 2018.
15Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012.
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Missing values mechanism: Rubin’s taxonomy16,17

• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA

▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

• Realizations: For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed

elements of x and while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

x⋆ = (1, 2, 3, 8, 5)

x = (1,NA, 3, 8,NA)

m = (0, 1, 0, 0, 1)

o(x ,m) = (1, 3, 8), oc(x⋆,m) = (2, 5)

16Rubin. Inference and missing data. Biometrika. 1976.
17What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013.
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Two views to model the joint distribution of (X ,M)

Selection Model18: p∗(M = m, x) = P(M = m | x)p∗(x)

Definition (SM-MAR)

P(M = m|x) = P(M = m|o(x ,m)) for all m ∈ M, x ∈ X .

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model19: p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition (PMM-MAR)

p∗(oc(x ,m) | o(x ,m),M = m) = p∗(oc(x ,m) | o(x ,m)).

for all m ∈ M, x ∈ X . The conditional distrib. of missing given obs. in

pattern m is equal to the unconditional one.20

Proposition (SM-MAR is equivalent to PMM-MAR)

18Heckman. Sample selection bias as a specification error. Econometrica. 1979
19Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993
20Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008
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MAR with shift in marginal distribution between patterns

• Gaussian PMM: X ∗ | M = m ∼ N(µm | Σm). Ex: for two patterns

m1 = (0, 0) and m2 = (1, 0) and a shift:

X =

(
x1,1 x1,2

NA x2,2

)
,M =

(
0 0

1 0

)
=

(
m1

m2

)
.

• Not identifiable without restriction. How distributions can change?

p∗(x1 | x2,M = m1)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m1)

= p∗(x1 | x2,M = m2)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m2)

= N(x2, 1)(x1) = p∗(x1 | x2).

Definition (Conditional indep. MAR - CIMAR)

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m)).

for all m,m′ ∈ M, x ∈ X .equivalent to oc(X ∗,m) | o(X ∗,m) |=M
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MAR with shifts in conditional distribution between patterns

X =

x1,1 x1,2 x1,3

NA x2,2 x2,3

NA NA x3,3

 ,M =

0 0 0

1 0 0

1 1 0

 =

m1

m2

m3


CIMAR

p∗(x1, x2 | x3,M = m1) = p∗(x1, x2 | x3,M = m2) = p∗(x1, x2 | x3,M = m3) =

p∗(x1, x2 | x3)

Distrib. of X1,X2 | X3 is not allowed to change from one pattern to

another, though the marginal distrib. of X3 can change.

PMM-MAR

p∗(x1, x2 | x3,M = m3) = p∗(x1, x2 | x3)

Both distrib. of observed variables and conditional ones can

change from pattern to pattern.

MCAR: No change allowed.

m ∈ M,m′ ∈ M, x ∈ X , p∗(x) = p∗(x | M = m) = p∗(x | M = m′)
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Relationships between the M(N)AR conditions
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(Non) Identifiability under non-parametric MAR

Definition: Imputing with a mixture of distribution

p∗(oc(x ,m) | o(x ,m)) is identifiable from M0 ⊂ M if there exists

some weights wm′(o(x ,m)) (summing to 1) such that the mixture

h∗(oc(x ,m) | o(x ,m)) =
∑

m′∈M0

wm′(o(x ,m))p∗(oc(x ,m) | o(x ,m),M = m′)

satisfies p∗(oc(x ,m) | o(x ,m)) = h∗(oc(x ,m) | o(x ,m)).

Proposition: Identifiability under PMM-MAR is not trivial

Assume |M| > 3. For any pattern m ∈ M, p∗(oc(x ,m) | o(x ,m)) is

- identifiable from any other pattern m′ ̸= m under CIMAR,

- is not identifiable from any single pattern m′ ̸= m under PMM-MAR.

If
∣∣∣∑d

j=1 mj

∣∣∣ > 1, p∗(oc(x ,m) | o(x ,m)) is not identifiable from Lm,

the set of patterns for which oc(x ,m) is observed.

Lm = {m′ ∈ M : m′
j = 0 for all j such that mj = 1}.
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Identifiability under MAR considering one variable at a time

• Consider the following mixture of distribution

h∗(xj | x−j) =
∑
m∈Lj

P(M = m)∑
m∈Lj

p∗(x−j | M = m)P(M = m)
p∗(x | M = m),

with Lj = {m ∈ M : mj = 0}, the patterns where xj is observed

Theorem: Identifiability of the right conditional distribution

Assume PMM-MAR holds,

h∗(xj | x−j) = p∗(xj | x−j), for all x−j with p∗(x−j) > 0

At Xj , one can reduce the |M| patterns to two, one where Xj is missing,

and one where it is observed. Though these two aggregated patterns are

mixtures of several patterns m ∈ M, MAR implies that both aggregated

patterns have the same conditional distribution X ∗
j | X ∗

−j
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Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For j ∈ {1, . . . , d}, t ≥ 1 use a univariate imputation to sample new

imputed values x
(t+1)
j ∼ pt(xj | x (t)−j ), where x

(t)
−j = {x (t)l }l ̸=j the imputed

& observed values of other variables except j at the tth iteration.

3. Iterate until convergence

Figure 1: Source: [?]
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1. Fill NA with plausible values to get an initial completed dataset

2. For j ∈ {1, . . . , d}, t ≥ 1 use a univariate imputation to sample new

imputed values x
(t+1)
j ∼ pt(xj | x (t)−j ), where x

(t)
−j = {x (t)l }l ̸=j the imputed

& observed values of other variables except j at the tth iteration.

3. Iterate until convergence

Theorem shows that if we assume to have access to the true distribution

p∗(x−j) (assume x−j is well imputed), we can impute according to the

true distribution p∗(xj | x−j) by drawing from the conditional distrib. of

Xj | X−j learned from all patterns in which xj is observed

FCS approach can identify the right conditional distributions under

PMM MAR
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What is a good imputation method under MAR?

▷ both conditional and marginal distribution shifts can occur for

different patterns under MAR.

▷ conditional shifts are handled with FCS

An ideal imputation method should

▷ (1) be a distributional regression method,

▷ (2) be able to capture nonlinearities in the data,

▷ (3) be able to deal with distributional shifts in the observed variables,

▷ (4) be fast to fit,

1-3 are crucial for imputation under MAR

4 is only relevant to reduce the computational burden.

Rk: Block-wise FCS (multi-output methods to impute variables as

blocks) should not be used: do not recover the correct distribution
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What is a good imputation method?

(1) be a distributional regression method,

(2) be able to capture nonlinearities in the data,

(3) be able to deal with distributional shifts in the observed variables,

Method (1) (2) (3)

missForest (Stekhoven & Bühlmann, 2011) ✓

mice-cart (Burgette & Reiter, 2010) ✓ ✓

mice-RF (Doove et al., 2014) ✓ ✓

mice-DRF (Näf et al., 2024) ✓ ✓

mice-norm.nob (Gaussian) ✓ ✓

mice-norm.predict (Regression) ✓

▷ mice-cart/RF estimate a tree, a forest, on observed data and then draw

imputations from the leaves (approx conditional distribution) whereas

distributional forest21 is a distributional method

21Cevid et al., Distributional Random Forests. JMLR. 2022
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Forests generalize poorly outside of the training set

Ex: Variables income & age with MAR missing values in income

Figure 1: True distribution against a draw from different imputation methods.

DRF, a distributional method > mice-RF but fails to deal with the

covariate shift (centering ≈ 2 instead of 5).

Finding an imputation method that meets (1) - (4) is still an open

problem!
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Empirical study: ranking with energy scores and not RMSE

Gaussian relation with shifts Non linear relation with shifts

Ex with d = 6, n = 1500, 20% NA and CIMAR, XOc = Bf (XO) +

ε1

ε2

ε3


Energy distance22 between imputed & real data

d(H,P∗) = 2E[∥X − Y ∥Rd ]− E[∥X − X ′∥Rd ]− E[∥Y − Y ′∥Rd ],

where ∥ · ∥Rd is the Euclidean metric on Rd , X ∼ H, Y ∼ P∗ and X ′,Y ′ are

independent copies of X and Y .
22Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
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Empirical study: ranking with energy scores and not RMSE

credit: Krystyna Grzesiak, Michal Burdukiewicz23 230 scenarios (10

missing values patterns 23 different-size datasets)

23imputomics: web server and R package for missing values imputation in

metabolomics data. Bioinformatics 2024.
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Conclusion

▷ Non-parametric PMM view of missing (different environments) helps

understand non-parametric imputation under MAR

▷ Identification result for FCS: the right conditional distributions are

identifiable under MAR with no parametric assumption

▷ Identification under the weakest MAR assumption.24 Beyond MAR. ∀j
∈ {1, . . . , d}, ∀x ∈ X , CIMNAR: P(Mj = 1|x) = P(Mj = 1|x−j)

▷ The quest for an FCS imputation method meeting all 3 points is open

▷ mice-DRF promising (code available)

▷ Imputation scores with missing values that are proper under MAR:

ranking imputation methods

▷ Simulations MAR for benchmarks

24Deng et al., (2022) and Fang (2023) showed identifiability for GAN imputation under CIMAR
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Thank you
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Imputing with a mixture of patterns

X =

x1,1 x1,2 x1,3

x2,1 NA x2,3

NA x3,2 x3,3

 ,M =

0 0 0

0 1 0

1 0 0

 =

m1

m2

m3

 .

whereby (X1,X2,X3) are independently uniformly distributed on [0, 1].

P(M = m1 | x) = P(M = m1 | x1) = x1/3

P(M = m2 | x) = P(M = m2 | x1) = 2/3− x1/3

P(M = m3 | x) = P(M = m3) = 1/3.
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Imputing with a mixture of patterns

We want to impute X1 in the third pattern (with X2 and X3 observed)

Figure 2: Distrib. of X1 in different patterns. Left: Distrib. of X1 | M = m3.

Middle: (X1 | M = m1). Right: Distribution of all patterns for which X1 is

observed (Mixture of the distribution of X1 in pattern 1 and 2).

• As the distrib. of (X2,X3) in each patterns is the same, this shows the

change of X1 | X2,X3 from m3 to m1: PMM-MAR allows change in the

conditional distrib. over patterns.

• Note that the distrib. X1 | X2,X3 in m3 corresponds to the mixture of

distribution of X1 | X2,X3 in the patterns where X1 is observed.
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Missing data: important bottleneck in statistical practice
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”One of the ironies of Big Data is that missing data play an ever more

significant role”25

Complete case analysis: delete incomplete samples

• Bias: Resulting sample not representative of the target population

• Information loss: Take a matrix with d features where each entry is missing

with probability 1/100, remove a row (of length d) when one entry is missing

d = 5 =⇒ ≈ 95% of rows kept

d = 300 =⇒ ≈ 5% of rows kept

25Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.
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”One of the ironies of Big Data is that missing data play an ever more

significant role”25

Complete case analysis: delete incomplete samples

• Bias: Resulting sample not representative of the target population

• Information loss: Take a matrix with d features where each entry is missing

with probability 1/100, remove a row (of length d) when one entry is missing

d = 5 =⇒ ≈ 95% of rows kept

d = 300 =⇒ ≈ 5% of rows kept

25Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.


