What is a good imputation under MAR missingness

Julie Josse Head of the Inria-Inserm team PreMeDICaL: "Precision Medicine by Data Integration & Causal Learning"

December 16, 2024

Näf et al. (2024) (https://arxiv.org/abs/2403.19196)

Jeffrey Näf

Erwan Scornet (Postdoc Inria) (Prof. Sorbonne Univ.)

Traumabase: an observational French registry on trauma²

- ▷ 40000 patients
- ▷ 250 continuous and categorical variables
- ▷ 40 trauma centers, 4000 new patients/ year

Center	Accident	Age	Sex	Lactate	Blood Pres.	Shock	Platelet	
Beaujon	fall	54	m	NM	180	yes	292 000	
Pitie	gun	26	m	NA	131	no	323 000	
Beaujon	moto	63	m	3.9	NR	yes	318 000	
Pitie	moto	30	W	Imp	107	no	211 000	
:								

¹Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
²www.traumabase.eu - https://www.traumatrix.fr/

Traumabase: an observational French registry on trauma²

- ▷ 40000 patients
- ▷ 250 continuous and categorical variables
- ▷ 40 trauma centers, 4000 new patients/ year

Center	Accident	Age	Sex	Lactate	Blood Pres.	Shock	Platelet	
Beaujon	fall	54	m	NM	180	yes	292 000	
Pitie	gun	26	m	NA	131	no	323 000	
Beaujon	moto	63	m	3.9	NR	yes	318 000	
Pitie	moto	30	W	Imp	107	no	211 000	
:								·.
•								•

 \Rightarrow **Explain and Predict** hemorrhagic shock, need for neurosurgery and need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests + Quantify uncertainty ^ $\!\!\!\!\!$

Clinical trial will be launched end 2024: real-time implementation of models in the ambulance via a mobile data collection application

¹Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
²www.traumabase.eu - https://www.traumatrix.fr/

Abundant literature: Creation of Rmistatic platform³ (> 150 packages) Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

³Mayer, J. et al. A unified platform for missing values methods and workflows. *R journal*. 2022. ⁴Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package ⁵J. et al. Consistency of supervised learning with missing values. *Stats papers*. 2018-2024. ⁶Le morvan, J. et al. What's a good imputation to predict with missing values? *Neurips2021*.

Abundant literature: Creation of Rmistatic platform³ (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

³Mayer, J. et al. A unified platform for missing values methods and workflows. *R journal*. 2022.
⁴Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package
⁵J. et al. Consistency of supervised learning with missing values. *Stats papers*. 2018-2024.
⁶Le morvan, J. et al. What's a good imputation to predict with missing values? *Neurips2021*.

Abundant literature: Creation of Rmistatic platform³ (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

(Multiple) imputation to get a complete data set. Ex: (M)ICE

³Mayer, J. et al. A unified platform for missing values methods and workflows. *R journal*. 2022.
⁴Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package
⁵J. et al. Consistency of supervised learning with missing values. *Stats papers*. 2018-2024.
⁶Le morvan, J. et al. What's a good imputation to predict with missing values? *Neurips2021*.

Abundant literature: Creation of Rmistatic platform³ (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

(Multiple) imputation to get a complete data set. Ex: (M)ICE

Matrix completion aim: **Predict the missing values** as well as possible. Solutions: using low rank matrix approximation

<u>Predictive aim</u>: **Predict an outcome** with missing values in covariates.^{5,6} Solutions: using deterministic (e.g. constant) imputation or Missing Incorporated in Attributes for trees based methods (grf package)

³Mayer, J. et al. A unified platform for missing values methods and workflows. *R journal*. 2022.
⁴Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package
⁵J. et al. Consistency of supervised learning with missing values. *Stats papers*. 2018-2024.
⁶Le morvan, J. et al. What's a good imputation to predict with missing values? *Neurips2021*.

Single imputation by the mean

$$\triangleright (x_{i1}, x_{i2}) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_{x_1}, \mu_{x_2}), \Sigma_{x_1x_2})$$

$$\begin{array}{c} = 0 & \hat{\mu}_{x_2} = -0.01 \\ = 1 & \hat{\sigma}_{x_2} = 1.01 \\ \hat{\rho} = 0.66 \end{array}$$

Single imputation by the mean

- $\triangleright (x_{i1}, x_{i2}) \underset{i i d}{\sim} \mathcal{N}_2((\boldsymbol{\mu}_{x_1}, \boldsymbol{\mu}_{x_2}), \boldsymbol{\Sigma}_{x_1 x_2})$
- \triangleright 70 % of missing entries completely at random on X_2

$$\hat{\mu}_{x_2} = 0.18$$

 $\hat{\sigma}_{x_2} = 0.9$
 $\hat{
ho} = 0.6$

Single imputation by the mean

- $\triangleright (x_{i1}, x_{i2}) \underset{i.i.d.}{\sim} \mathcal{N}_2((\mu_{x_1}, \mu_{x_2}), \Sigma_{x_1x_2})$
- \triangleright 70 % of missing entries completely at random on X_2
- Estimate parameters on the mean imputed data

Mean imputation deforms joint and marginal distributions

Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution $x_{i2} = \beta_0 + \beta_1 x_{i1} + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

- ▷ Regression imputation: Estimate β (here with complete data) and impute $\hat{x}_{i2} = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} \Rightarrow$ variance underestimated and correlation overestimated
- ▷ Stochastic reg. imputation: Estimate β and σ impute from the predictive $\hat{x}_{i2} \sim \mathcal{N}\left(\beta_0 + \hat{\beta}_1 x_{i1}, \hat{\sigma}^2\right) \Rightarrow$ preserve distributions

Assuming a joint distribution

 \triangleright Gaussian model $x_i \sim \mathcal{N}\left(\mu, \Sigma
ight)$

- $\triangleright \ \underline{\text{Low rank}}: \ X_{n \times d} = \mu_{n \times d} + \varepsilon \ \varepsilon_{ij} \overset{\text{iid}}{\sim} \mathcal{N}\left(0, \ \sigma^2\right) \text{ with } \mu \text{ of low rank}$
 - \Rightarrow Different regularization depending on noise regime⁷
 - \Rightarrow Count data,⁸ ordinal data, categorical data, blocks/multilevel data
- Optimal transport,⁹ deep generative models: GAIN,¹⁰ MIWAE,¹¹ etc.¹²¹³

⁷ J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. *JMLR*. 2016.
⁸ Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. *JASA*. 2019.
⁹ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. *ICML*. 2020.
¹⁰ Yoon et al. GAIN: Missing data imputation using generative adversarial nets. *ICML*. 2018.
¹¹ Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. *ICML*. 2018.
¹² Deng et al. Extended missing data imput. via gans. *Data Mining & Knowledge Discovery*. 2022.
¹³ Fang Bao. Fragmgan gan for fragmentary data imputation. *Stat.theory & Related Fields*. 2023.
¹⁴ van Buuren, S. Flexible Imputation of Missing Data. Chapman Hall/CRC Press. 2018.
¹⁵ Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. *Bioinfo*. 2012.

Assuming a joint distribution

 \triangleright Gaussian model $x_i \sim \mathcal{N}\left(\mu, \Sigma
ight)$

- $\triangleright \; \underline{\text{Low rank}} : X_{n \times d} = \mu_{n \times d} + \varepsilon \; \varepsilon_{ij} \overset{\text{iid}}{\sim} \mathcal{N}\left(0, \, \sigma^2\right) \; \text{with} \; \mu \text{ of low rank}$
 - \Rightarrow Different regularization depending on noise regime 7
 - \Rightarrow Count data,⁸ ordinal data, categorical data, blocks/multilevel data
- Optimal transport,⁹ deep generative models: GAIN,¹⁰ MIWAE,¹¹ etc.¹²¹³

Iterating conditional models (joint distribution implicitly defined)

with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations¹⁴
 iterative imputation of each variable by random forests¹⁵

⁷ J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. *JMLR*. 2016.
 ⁸ Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. *JASA*. 2019.
 ⁹ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. *ICML*. 2020.
 ¹⁰ Yoon et al. GAIN: Missing data imputation using generative adversarial nets. *ICML*. 2018.
 ¹¹ Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. *ICML*. 2018.
 ¹² Deng et al. Extended missing data imput. via gans. *Data Mining & Knowledge Discovery*. 2022.
 ¹³ Fang Bao. Fragmgan gan for fragmentary data imputation. *Stat.theory & Related Fields*. 2023.
 ¹⁴ van Buuren, S. Flexible Imputation of Missing Data. Chapman Hall/CRC Press. 2018.
 ¹⁵ Stekhoven & Bühlmann. MissForest-non-parametric imputation for mixed data. *Bioinfo*. 2012.

• Random Variables:

- ▷ $X^* \in \mathbb{R}^d$: complete unavailable data, $X \in \mathbb{R}^d$: observed data with NA ▷ $M \in \{0, 1\}^d$: missing pattern, or mask, $M_j = 1$ if and only if X_j is missing
- <u>Realizations</u>: For a pattern m, $o(x, m) = (x_j)_{j \in \{1, \dots, d\}: m_j = 0}$ the observed elements of x and while $o^c(x, m) = (x_j)_{j \in \{1, \dots, d\}: m_j = 1, j \in \{1, \dots,$

$$x^* = (1, 2, 3, 8, 5)$$

 $x = (1, NA, 3, 8, NA)$
 $m = (0, 1, 0, 0, 1)$
 $o(x, m) = (1, 3, 8), \quad o^c(x^*, m) = (2, 5)$

¹⁶Rubin. Inference and missing data. *Biometrika*. 1976.
 ¹⁷What Is Meant by "Missing at Random"? Seaman, et al. *Statistical Science*. 2013.

Missing values mechanism: Rubin's taxonomy^{16,17}

• Random Variables:

▷ $X^* \in \mathbb{R}^d$: complete unavailable data, $X \in \mathbb{R}^d$: observed data with NA ▷ $M \in \{0, 1\}^d$: missing pattern, or mask, $M_j = 1$ if and only if X_j is missing For a pattern m, $o(x, m) = (x_j)_{j \in \{1, ..., d\}: m_j = 0}$ the observed elements of x and while $o^c(x, m) = (x_j)_{j \in \{1, ..., d\}: m_j = 1}$, the missing elements.

Ex: Simulated missing values according to the 3 mechanisms (Orange points will be missing) in Systolic Blood Pressure - GCS is always observed

¹⁶Rubin. Inference and missing data. *Biometrika*. 1976.

¹⁷What Is Meant by "Missing at Random"? Seaman, et al. *Statistical Science*. 2013.

Two views to model the joint distribution of (X, M)

Selection Model¹⁸: $p^*(M = m, x) = \mathbb{P}(M = m \mid x)p^*(x)$

Definition (SM-MAR)

$$\mathbb{P}(M = m | x) = \mathbb{P}(M = m | o(x, m))$$
 for all $m \in \mathcal{M}, x \in \mathcal{X}$.

The proba. of any m occurring only depends on the obs part of x.

Pattern Mixture Model¹⁹: $p^*(M = m, x) = p^*(x \mid M = m)\mathbb{P}(M = m)$

Definition (PMM-MAR)

$$p^*(o^c(x,m) \mid o(x,m), M = m) = p^*(o^c(x,m) \mid o(x,m)).$$

for all $m \in \mathcal{M}, x \in \mathcal{X}$. The conditional distrib. of missing given obs. in pattern *m* is equal to the unconditional one.²⁰

¹⁸Heckman. Sample selection bias as a specification error. *Econometrica*. 1979
 ¹⁹Little. Pattern-mixture models for multivariate incomplete data. *JASA*. 1993
 ²⁰Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. *JRSSB*. 2008

Two views to model the joint distribution of (X, M)

Selection Model¹⁸: $p^*(M = m, x) = \mathbb{P}(M = m \mid x)p^*(x)$

Definition (SM-MAR)

$$\mathbb{P}(M = m | x) = \mathbb{P}(M = m | o(x, m))$$
 for all $m \in \mathcal{M}, x \in \mathcal{X}$.

The proba. of any m occurring only depends on the obs part of x.

Pattern Mixture Model¹⁹: $p^*(M = m, x) = p^*(x \mid M = m)\mathbb{P}(M = m)$

Definition (PMM-MAR)

$$p^*(o^c(x,m) \mid o(x,m), M = m) = p^*(o^c(x,m) \mid o(x,m)).$$

for all $m \in \mathcal{M}, x \in \mathcal{X}$. The conditional distrib. of missing given obs. in pattern *m* is equal to the unconditional one.²⁰

Proposition (SM-MAR is equivalent to PMM-MAR)

¹⁸Heckman. Sample selection bias as a specification error. *Econometrica*. 1979
 ¹⁹Little. Pattern-mixture models for multivariate incomplete data. *JASA*. 1993
 ²⁰Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. *JRSSB*. 2008

• Gaussian PMM: $X^* \mid M = m \sim N(\mu_m \mid \Sigma_m)$. Ex: for two patterns $m_1 = (0,0)$ and $m_2 = (1,0)$ and **a shift**:

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ NA & x_{2,2} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$

• Gaussian PMM: $X^* \mid M = m \sim N(\mu_m \mid \Sigma_m)$. Ex: for two patterns $m_1 = (0,0)$ and $m_2 = (1,0)$ and **a shift**:

$$(X_1, X_2) \mid M = m_1 \sim N\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}\right)(X_1, X_2) \mid M = m_2 \sim N\left(\begin{pmatrix} 5\\ 5 \end{pmatrix}, \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}\right)$$

• Gaussian PMM: $X^* \mid M = m \sim N(\mu_m \mid \Sigma_m)$. Ex: for two patterns $m_1 = (0,0)$ and $m_2 = (1,0)$ and **a shift**:

$$(X_1, X_2) \mid M = m_1 \sim N\left(\begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}\right)(X_1, X_2) \mid M = m_2 \sim N\left(\begin{pmatrix} 5\\ 5 \end{pmatrix}, \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix}\right)$$

• Not identifiable without restriction. How distributions can change?

$$= \underbrace{p^*(x_1 \mid x_2, M = m_2)}_{p^*(o^c(x, m_2) \mid o(x, m_2), M = m_2)} = N(x_2, 1)(x_1) = p^*(x_1 \mid x_2).$$

• <u>Gaussian PMM</u>: $X^* \mid M = m \sim N(\mu_m \mid \Sigma_m)$. Ex: for two patterns $m_1 = (0,0)$ and $m_2 = (1,0)$ and **a shift**:

$$(X_1, X_2) \mid M = m_1 \sim N\left(\begin{pmatrix}0\\0\end{pmatrix}, \begin{pmatrix}2 & 1\\1 & 1\end{pmatrix}\right)(X_1, X_2) \mid M = m_2 \sim N\left(\begin{pmatrix}5\\5\end{pmatrix}, \begin{pmatrix}2 & 1\\1 & 1\end{pmatrix}\right)$$

• Not identifiable without restriction. How distributions can change?

$$\underbrace{p^*(x_1 \mid x_2, M = m_1)}_{p^*(o^c(x, m_2)) | o(x, m_2), M = m_1)} = \underbrace{p^*(x_1 \mid x_2, M = m_2)}_{p^*(o^c(x, m_2)) | o(x, m_2), M = m_2)} = N(x_2, 1)(x_1) = p^*(x_1 \mid x_2).$$

Definition (Conditional indep. MAR - CIMAR)

 $p^*(o^c(x,m) \mid o(x,m), M = m') = p^*(o^c(x,m) \mid o(x,m)).$ for all $m, m' \in \mathcal{M}, x \in \mathcal{X}$.equivalent to $o^c(X^*,m) \mid o(X^*,m) \perp M$

MAR with shifts in conditional distribution between patterns

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ NA & x_{2,2} & x_{2,3} \\ NA & NA & x_{3,3} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}$$

CIMAR

 $p^*(x_1, x_2 \mid x_3, M = m_1) = p^*(x_1, x_2 \mid x_3, M = m_2) = p^*(x_1, x_2 \mid x_3, M = m_3) = p^*(x_1, x_2 \mid x_3)$

Distrib. of $X_1, X_2 \mid X_3$ is not allowed to change from one pattern to another, though the marginal distrib. of X_3 can change.

PMM-MAR

$$p^*(x_1, x_2 \mid x_3, M = m_3) = p^*(x_1, x_2 \mid x_3)$$

Both distrib. of observed variables and conditional ones can change from pattern to pattern.

MCAR: No change allowed.

$$m \in \mathcal{M}, m' \in \mathcal{M}, x \in \mathcal{X}, \ p^*(x) = p^*(x \mid M = m) = p^*(x \mid M = m')$$

Relationships between the M(N)AR conditions

(Non) Identifiability under non-parametric MAR

Definition: Imputing with a mixture of distribution

 $p^*(o^c(x,m) \mid o(x,m))$ is identifiable from $\mathcal{M}_0 \subset \mathcal{M}$ if there exists some weights $w_{m'}(o(x,m))$ (summing to 1) such that the mixture

 $h^{*}(o^{c}(x,m) \mid o(x,m)) = \sum_{m' \in \mathcal{M}_{0}} w_{m'}(o(x,m))p^{*}(o^{c}(x,m) \mid o(x,m), M = m')$

satisfies $p^*(o^c(x, m) | o(x, m)) = h^*(o^c(x, m) | o(x, m)).$

Proposition: Identifiability under PMM-MAR is not trivial

Assume $|\mathcal{M}| > 3$. For any pattern $m \in \mathcal{M}$, $p^*(o^c(x,m) \mid o(x,m))$ is

- identifiable from any other pattern $m' \neq m$ under CIMAR,
- is not identifiable from any single pattern $m' \neq m$ under PMM-MAR.

If $\left|\sum_{j=1}^{d} m_{j}\right| > 1$, $p^{*}(o^{c}(x,m) \mid o(x,m))$ is not identifiable from L_{m} , the set of patterns for which $o^{c}(x,m)$ is observed. $L_{m} = \{m' \in \mathcal{M} : m'_{j} = 0 \text{ for all } j \text{ such that } m_{j} = 1\}.$ • Consider the following mixture of distribution

$$h^{*}(x_{j} \mid x_{-j}) = \sum_{m \in L_{j}} \frac{\mathbb{P}(M = m)}{\sum_{m \in L_{j}} p^{*}(x_{-j} \mid M = m) \mathbb{P}(M = m)} p^{*}(x \mid M = m),$$

with $L_j = \{m \in \mathcal{M} : m_j = 0\}$, the patterns where x_j is observed

Theorem: Identifiability of the right conditional distribution Assume **PMM-MAR** holds,

$$h^*(x_j \mid x_{-j}) = p^*(x_j \mid x_{-j}), \text{ for all } x_{-j} \text{ with } p^*(x_{-j}) > 0$$

At X_j , one can reduce the $|\mathcal{M}|$ patterns to two, one where X_j is missing, and one where it is observed. Though these two aggregated patterns are mixtures of several patterns $m \in \mathcal{M}$, MAR implies that both aggregated patterns have the same conditional distribution $X_i^* \mid X_{-i}^*$

Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For $j \in \{1, \ldots, d\}$, $t \ge 1$ use a univariate imputation to sample new imputed values $x_j^{(t+1)} \sim p^t(x_j \mid x_{-j}^{(t)})$, where $x_{-j}^{(t)} = \{x_l^{(t)}\}_{l \ne j}$ the imputed & observed values of other variables except j at the *t*th iteration.

3. Iterate until convergence

1. Fill NA with plausible values to get an initial completed dataset

2. For $j \in \{1, \ldots, d\}$, $t \ge 1$ use a univariate imputation to sample new imputed values $x_j^{(t+1)} \sim p^t(x_j \mid x_{-j}^{(t)})$, where $x_{-j}^{(t)} = \{x_l^{(t)}\}_{l \ne j}$ the imputed & observed values of other variables except j at the *t*th iteration.

3. Iterate until convergence

Theorem shows that if we assume to have access to the true distribution $p^*(x_{-j})$ (assume x_{-j} is well imputed), we can impute according to the true distribution $p^*(x_j | x_{-j})$ by drawing from the conditional distrib. of $X_j | X_{-j}$ learned from all patterns in which x_j is observed

FCS approach can identify the right conditional distributions under PMM MAR

What is a good imputation method under MAR?

- ▷ both conditional and marginal distribution shifts can occur for different patterns under MAR.
- ▷ conditional shifts are handled with FCS

An ideal imputation method should

- ▷ (1) be a distributional regression method,
- (2) be able to capture nonlinearities in the data,
- (3) be able to deal with distributional shifts in the observed variables,
 (4) be fast to fit,

1-3 are crucial for imputation under MAR

4 is only relevant to reduce the computational burden.

Rk: Block-wise FCS (multi-output methods to impute variables as blocks) should not be used: do not recover the correct distribution

- (1) be a distributional regression method,
- (2) be able to capture nonlinearities in the data,
- (3) be able to deal with distributional shifts in the observed variables,

Method	(1)	(2)	(3)
missForest (Stekhoven & Bühlmann, 2011)		\checkmark	
mice-cart (Burgette & Reiter, 2010)	\checkmark	\checkmark	
mice-RF (Doove et al., 2014)	\checkmark	\checkmark	
mice-DRF (Näf et al., 2024)	\checkmark	\checkmark	
mice-norm.nob (Gaussian)	\checkmark		\checkmark
mice-norm.predict (Regression)			\checkmark

- (1) be a distributional regression method,
- (2) be able to capture nonlinearities in the data,
- (3) be able to deal with distributional shifts in the observed variables,

Method	(1)	(2)	(3)
missForest (Stekhoven & Bühlmann, 2011)		\checkmark	
mice-cart (Burgette & Reiter, 2010)	\checkmark	\checkmark	
mice-RF (Doove et al., 2014)	\checkmark	\checkmark	
mice-DRF (Näf et al., 2024)	\checkmark	\checkmark	
mice-norm.nob (Gaussian)	\checkmark		\checkmark
mice-norm.predict (Regression)			\checkmark

mice-cart/RF estimate a tree, a forest, on observed data and then draw imputations from the leaves (approx conditional distribution) whereas distributional forest²¹ is a distributional method

²¹Cevid et al., Distributional Random Forests. JMLR. 2022

Forests generalize poorly outside of the training set

Ex: Variables income & age with MAR missing values in income

Figure 1: True distribution against a draw from different imputation methods.

DRF, a distributional method > mice-RF but fails to deal with the covariate shift (centering \approx 2 instead of 5).

Finding an imputation method that meets (1) - (4) is still an open problem!

Gaussian relation with shifts

Non linear relation with shifts

Ex with d = 6, n = 1500, 20% NA and CIMAR, $X_{O^c} = \mathbf{B}f(X_O) + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$

Energy distance²² between imputed & real data

$$d(H,P^*) = 2\mathbb{E}[\|X-Y\|_{\mathbb{R}^d}] - \mathbb{E}[\|X-X'\|_{\mathbb{R}^d}] - \mathbb{E}[\|Y-Y'\|_{\mathbb{R}^d}],$$

where $\|\cdot\|_{\mathbb{R}^d}$ is the Euclidean metric on \mathbb{R}^d , $X \sim H$, $Y \sim P^*$ and X', Y' are independent copies of X and Y.

²²Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

Gaussian relation with shifts

Non linear relation with shifts

Ex with d = 6, n = 1500, 20% NA and CIMAR, $X_{O^c} = \mathbf{B}f(X_O) + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$

Energy distance²² between imputed & real data

$$d(H,P^*) = 2\mathbb{E}[\|X-Y\|_{\mathbb{R}^d}] - \mathbb{E}[\|X-X'\|_{\mathbb{R}^d}] - \mathbb{E}[\|Y-Y'\|_{\mathbb{R}^d}],$$

where $\|\cdot\|_{\mathbb{R}^d}$ is the Euclidean metric on \mathbb{R}^d , $X \sim H$, $Y \sim P^*$ and X', Y' are independent copies of X and Y.

²²Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

credit: Krystyna Grzesiak, Michal Burdukiewicz²³ 230 scenarios (10 missing values patterns 23 different-size datasets)

²³imputomics: web server and R package for missing values imputation in metabolomics data. *Bioinformatics 2024*.

credit: Krystyna Grzesiak, Michal Burdukiewicz²³ 230 scenarios (10 missing values patterns 23 different-size datasets)

²³imputomics: web server and R package for missing values imputation in metabolomics data. *Bioinformatics 2024*.

- Non-parametric PMM view of missing (different environments) helps understand non-parametric imputation under MAR
- Identification result for FCS: the right conditional distributions are identifiable under MAR with no parametric assumption
- ▷ Identification under the weakest MAR assumption.²⁴ Beyond MAR. $\forall j \in \{1, ..., d\}, \forall x \in \mathcal{X}, CIMNAR: \mathbb{P}(M_j = 1|x) = \mathbb{P}(M_j = 1|x_{-j})$

- Non-parametric PMM view of missing (different environments) helps understand non-parametric imputation under MAR
- Identification result for FCS: the right conditional distributions are identifiable under MAR with no parametric assumption
- ▷ Identification under the weakest MAR assumption.²⁴ Beyond MAR. $\forall j \in \{1, ..., d\}, \forall x \in \mathcal{X}, CIMNAR: \mathbb{P}(M_j = 1|x) = \mathbb{P}(M_j = 1|x_{-j})$
- $\triangleright~$ The quest for an FCS imputation method meeting all 3 points is open
- ▷ mice-DRF promising (code available)
- Imputation scores with missing values that are proper under MAR: ranking imputation methods
- Simulations MAR for benchmarks

 $^{^{24}}$ Deng et al., (2022) and Fang (2023) showed identifiability for GAN imputation under CIMAR

Thank you

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & NA & x_{2,3} \\ NA & x_{3,2} & x_{3,3} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}.$$

whereby (X_1, X_2, X_3) are independently uniformly distributed on [0, 1].

$$\mathbb{P}(M = m_1 \mid x) = \mathbb{P}(M = m_1 \mid x_1) = x_1/3$$
$$\mathbb{P}(M = m_2 \mid x) = \mathbb{P}(M = m_2 \mid x_1) = 2/3 - x_1/3$$
$$\mathbb{P}(M = m_3 \mid x) = \mathbb{P}(M = m_3) = 1/3.$$

Imputing with a mixture of patterns

We want to impute X_1 in the third pattern (with X_2 and X_3 observed)

Figure 2: Distrib. of X_1 in different patterns. Left: Distrib. of $X_1 | M = m_3$. Middle: $(X_1 | M = m_1)$. Right: Distribution of all patterns for which X_1 is observed (Mixture of the distribution of X_1 in pattern 1 and 2).

• As the distrib. of (X_2, X_3) in each patterns is the same, this shows the change of $X_1 \mid X_2, X_3$ from m_3 to m_1 : PMM-MAR allows change in the conditional distrib. over patterns.

• Note that the distrib. $X_1 \mid X_2, X_3$ in m_3 corresponds to the mixture of distribution of $X_1 \mid X_2, X_3$ in the patterns where X_1 is observed.

Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role" $^{\rm 25}$

Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role"²⁵

Complete case analysis: delete incomplete samples

- Bias: Resulting sample not representative of the target population
- Information loss: Take a matrix with d features where each entry is missing with probability 1/100, remove a row (of length d) when one entry is missing

$$d = 5 \implies \approx 95\%$$
 of rows kept
 $d = 300 \implies \approx 5\%$ of rows kept

²⁵Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.