What is a good imputation under MAR missingness

Julie Josse Head of the Inria-Inserm team PreMeDICaL: "Precision Medicine by Data Integration & Causal Learning"

December 16, 2024

Näf et al. (2024) (https://arxiv.org/abs/2403.19196)

Jeffrey Näf Erwan Scornet (Postdoc Inria) (Prof. Sorbonne Univ.)

Traumabase: an observational French registry on trauma²

 $>$ 40000 patients

.

- ▷ 250 continuous and categorical variables
- ▷ 40 trauma centers, 4000 new patients/ year

.

¹Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023. 2 www.traumabase.eu - https://www.traumatrix.fr/

Traumabase: an observational French registry on trauma²

- \triangleright 40000 patients
- ▷ 250 continuous and categorical variables
- ▷ 40 trauma centers, 4000 new patients/ year

 \Rightarrow Explain and Predict hemorrhagic shock, need for neurosurgery and need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests $+$ Quantify uncertainty¹

Clinical trial will be launched end 2024: real-time implementation of models in the ambulance via a mobile data collection application

¹Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023. 2 www.traumabase.eu - https://www.traumatrix.fr/

Abundant literature: Creation of Rm istatic platform 3 (>150 packages) Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

 3 Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022. 4 Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package ⁵ J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024. 6 Le morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.

Abundant literature: Creation of Rm istatic platform 3 (>150 packages) Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

 3 Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022. 4 Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package ⁵ J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024. 6 Le morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.

Abundant literature: Creation of Rm istatic platform 3 (>150 packages) Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

(Multiple) imputation to get a complete data set. Ex: (M)ICE

 3 Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022. 4 Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package ⁵ J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024. 6 Le morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.

Abundant literature: Creation of Rm istatic platform 3 (>150 packages) Inferential aim: Estimate parameters & their variance, i.e. $\hat{\beta}$, $\hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms⁴

(Multiple) imputation to get a complete data set. Ex: (M)ICE

Matrix completion aim: Predict the missing values as well as possible. Solutions: using low rank matrix approximation

Predictive aim: Predict an outcome with missing values in covariates.^{5,6} Solutions: using deterministic (e.g. constant) imputation or Missing Incorporated in Attributes for trees based methods (grf package)

 3 Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022. 4 Jiang, J. et al. Logistic Regression with Missing Covariates *CSDA*. 2019. - misaem package ⁵ J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024. 6 Le morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.

Single imputation by the mean

$$
\triangleright (x_{i1}, x_{i2}) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_{x_1}, \mu_{x_2}), \Sigma_{x_1x_2})
$$

$$
\begin{array}{l|l}\n\mu_{x_2} = 0 & \hat{\mu}_{x_2} = -0.01 \\
\sigma_{x_2} = 1 & \hat{\sigma}_{x_2} = 1.01 \\
\rho = 0.6 & \hat{\rho} = 0.66\n\end{array}
$$

 σ_{x_2}

Single imputation by the mean

- \triangleright (x_{i1}, x_{i2})_{i.i.d} N₂((μ_{x₁}, μ_{x₂), Σ_{x₁x₂)}}
- \triangleright 70 % of missing entries completely at random on X_2

$$
\begin{array}{l} \mu_{\mathsf{x}_2}=0 \\ \sigma_{\mathsf{x}_2}=1 \\ \rho=0.6 \end{array} \quad \rule{0mm}{2mm} \boxed{\rule{0mm}{2mm}}
$$

$$
\begin{array}{|c} \hline \hat{\mu}_{\mathsf{x}_2}=0.18 \\ \hline \hat{\sigma}_{\mathsf{x}_2}=0.9 \\ \hline \hat{\rho}=0.6 \end{array}
$$

Single imputation by the mean

- \triangleright (x_{i1}, x_{i2})_{i.i.d} N₂((μ_{x₁}, μ_{x₂), Σ_{x₁x₂)}}
- \triangleright 70 % of missing entries completely at random on X_2
- ▷ Estimate parameters on the mean imputed data

Mean imputation deforms joint and marginal distributions

Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution $x_{i2}=\beta_0+\beta_1x_{i1}+\varepsilon_i$, $\varepsilon_i\sim\mathcal{N}(0,\sigma^2)$

- \triangleright Regression imputation: Estimate β (here with complete data) and impute $\hat{x}_{i2} = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} \Rightarrow$ variance underestimated and correlation overestimated
- \triangleright Stochastic reg. imputation: Estimate β and σ impute from the predictive $\hat{\mathsf{x}}_{\mathsf{i2}} \sim \mathcal{N}\left(\beta_{0} + \hat{\beta}_{1}\mathsf{x}_{\mathsf{i1}}, \hat{\sigma}^2\right) \Rightarrow$ preserve distributions

Impute while preserving distribution. Multivariate case

Assuming a joint distribution

Gaussian model x_i ∼ $\mathcal{N}(\mu, \Sigma)$

- ⊳ <u>Low rank</u> : $X_{n\times d} = \mu_{n\times d} + \varepsilon \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0,\,\sigma^2\right)$ with μ of low rank
	- \Rightarrow Different regularization depending on noise regime⁷
	- \Rightarrow Count data, 8 ordinal data, categorical data, blocks/multilevel data

 \triangleright <code>Optimal</code> transport, 9 deep generative models: <code>GAIN, 10 </code> MIWAE, 11 etc. $^{12\,13}$

 7 J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016. ⁸Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019. ⁹ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020. 10 Yoon et al. GAIN: Missing data imputation using generative adversarial nets. *ICML*. 2018. 11 Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. ICML. 2018. ¹²Deng et al. Extended missing data imput. via gans. Data Mining & Knowledge Discovery. 2022. ¹³ Fang Bao. Fragmgan gan for fragmentary data imputation. *Stat.theory & Related Fields*. 2023. ¹⁴van Buuren, S. Flexible Imputation of Missing Data. Chapman Hall/CRC Press. 2018. ¹⁵Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012.

7

Impute while preserving distribution. Multivariate case

Assuming a joint distribution

⊳ Gaussian model $x_i \sim \mathcal{N}(\mu, \Sigma)$

- ⊳ <u>Low rank</u> : $X_{n\times d} = \mu_{n\times d} + \varepsilon \varepsilon_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0,\,\sigma^2\right)$ with μ of low rank
	- \Rightarrow Different regularization depending on noise regime⁷
	- \Rightarrow Count data, 8 ordinal data, categorical data, blocks/multilevel data
- \triangleright <code>Optimal</code> transport, 9 deep generative models: <code>GAIN, 10 </code> MIWAE, 11 etc. $^{12\,13}$

Iterating conditional models (joint distribution implicitly defined)

 \triangleright with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations¹⁴ \triangleright iterative imputation of each variable by random forests¹⁵

 7 J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016. ⁸Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019. ⁹ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020. 10 Yoon et al. GAIN: Missing data imputation using generative adversarial nets. *ICML*. 2018. 11 Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. ICML. 2018. ¹²Deng et al. Extended missing data imput. via gans. Data Mining & Knowledge Discovery. 2022. ¹³ Fang Bao. Fragmgan gan for fragmentary data imputation. *Stat.theory & Related Fields*. 2023. ¹⁴van Buuren, S. Flexible Imputation of Missing Data. Chapman Hall/CRC Press. 2018. ¹⁵Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012.

7

• Random Variables:

- $\triangleright\; X^\star \in \mathbb{R}^d$: complete unavailable data, $X \in \mathbb{R}^d$: observed data with <code>NA</code> $\triangleright\;\,M\in\{0,1\}^{d}\colon$ missing pattern, or mask, $M_{j}=1$ if and only if X_{j} is missing
- Realizations: For a pattern m, $o(x, m) = (x_j)_{j \in \{1, ..., d\} : m_j = 0}$ the observed elements of x and while $o^c(x, m) = (x_j)_{j \in \{1, ..., d\}:m_j = 1, \text{ the missing elements.}}$

$$
x^* = (1, 2, 3, 8, 5)
$$

\n
$$
x = (1, NA, 3, 8, NA)
$$

\n
$$
m = (0, 1, 0, 0, 1)
$$

\n
$$
o(x, m) = (1, 3, 8), \qquad oc(x^*, m) = (2, 5)
$$

16 Rubin. Inference and missing data. Biometrika. 1976. ¹⁷What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

• Random Variables:

 $\triangleright\; X^\star \in \mathbb{R}^d$: complete unavailable data, $X \in \mathbb{R}^d$: observed data with <code>NA</code> $\triangleright \hspace{0.1cm} M \in \{ 0,1 \}^{d}$: missing pattern, or mask, $M_{j} = 1$ if and only if X_{j} is missing For a pattern m, $o(x, m) = (x_j)_{j \in \{1, ..., d\} : m_i = 0}$ the observed elements of x and while $o^c(x, m) = (x_j)_{j \in \{1, ..., d\}: m_j = 1, \text{ the missing elements.}}$

Ex: Simulated missing values according to the 3 mechanisms (Orange points will be missing) in Systolic Blood Pressure - GCS is always observed

¹⁷What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

Two views to model the joint distribution of (X, M)

Selection Model¹⁸:
$$
p^*(M = m, x) = \mathbb{P}(M = m | x)p^*(x)
$$

Definition (SM-MAR)

$$
\mathbb{P}(M=m|x)=\mathbb{P}(M=m|o(x,m))
$$
 for all $m \in \mathcal{M}, x \in \mathcal{X}$.

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model¹⁹: $p^*(M = m, x) = p^*(x \mid M = m) \mathbb{P}(M = m)$

Definition (PMM-MAR)

$$
p^*(o^c(x,m) | o(x,m), M = m) = p^*(o^c(x,m) | o(x,m)).
$$

for all $m \in \mathcal{M}, x \in \mathcal{X}$. The conditional distrib. of missing given obs. in pattern m is equal to the unconditional one.²⁰

 18 Heckman. Sample selection bias as a specification error. *Econometrica*. 1979 ¹⁹Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993 20 Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008 Two views to model the joint distribution of (X, M)

Selection Model¹⁸:
$$
p^*(M = m, x) = \mathbb{P}(M = m | x)p^*(x)
$$

Definition (SM-MAR)

$$
\mathbb{P}(M=m|x)=\mathbb{P}(M=m|o(x,m))
$$
 for all $m \in \mathcal{M}, x \in \mathcal{X}$.

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model¹⁹: $p^*(M = m, x) = p^*(x \mid M = m) \mathbb{P}(M = m)$

Definition (PMM-MAR)

$$
p^*(o^c(x, m) | o(x, m), M = m) = p^*(o^c(x, m) | o(x, m)).
$$

for all $m \in \mathcal{M}, x \in \mathcal{X}$. The conditional distrib. of missing given obs. in pattern m is equal to the unconditional one.²⁰

Proposition (SM-MAR is equivalent to PMM-MAR)

 18 Heckman. Sample selection bias as a specification error. *Econometrica*. 1979 191 ittle. Pattern-mixture models for multivariate incomplete data. JASA. 1993 20 Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008

 \bullet Gaussian PMM: X^* | $M = m \sim N(\mu_m | \Sigma_m)$. Ex: for two patterns $m_1 = (0, 0)$ and $m_2 = (1, 0)$ and **a shift**:

$$
\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ N A & x_{2,2} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}.
$$

 \bullet Gaussian PMM: X^* | $M = m \sim N(\mu_m | \Sigma_m)$. Ex: for two patterns $m_1 = (0, 0)$ and $m_2 = (1, 0)$ and **a shift**:

$$
(X_1,X_2) | M = m_1 \sim N\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right)(X_1,X_2) | M = m_2 \sim N\left(\begin{pmatrix}5\\5\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right).
$$

 \bullet Gaussian PMM: X^* | $M = m \sim N(\mu_m | \Sigma_m)$. Ex: for two patterns $m_1 = (0, 0)$ and $m_2 = (1, 0)$ and a shift:

$$
(X_1,X_2) | M = m_1 \sim N\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right)(X_1,X_2) | M = m_2 \sim N\left(\begin{pmatrix}5\\5\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right).
$$

• Not identifiable without restriction. How distributions can change?

$$
= \underbrace{p^*(x_1 \mid x_2, M = m_2)}_{p^*(o^c(x, m_2) \mid o(x, m_2), M = m_2)} = N(x_2, 1)(x_1) = p^*(x_1 \mid x_2).
$$

 \bullet Gaussian PMM: X^* | $M = m \sim N(\mu_m | \Sigma_m)$. Ex: for two patterns $m_1 = (0, 0)$ and $m_2 = (1, 0)$ and **a shift**:

$$
(X_1,X_2) | M = m_1 \sim N\left(\begin{pmatrix}0\\0\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right)(X_1,X_2) | M = m_2 \sim N\left(\begin{pmatrix}5\\5\end{pmatrix},\begin{pmatrix}2&1\\1&1\end{pmatrix}\right).
$$

• Not identifiable without restriction. How distributions can change?

$$
\underbrace{p^*(x_1 \mid x_2,M=m_1)}_{p^*(o^c(x,m_2)\mid o(x,m_2),M=m_1)} = \underbrace{p^*(x_1 \mid x_2,M=m_2)}_{p^*(o^c(x,m_2)\mid o(x,m_2),M=m_2)} = N(x_2,1)(x_1) = p^*(x_1 \mid x_2).
$$

Definition (Conditional indep. MAR - CIMAR)

 $p^*(o^c(x, m) | o(x, m), M = m') = p^*(o^c(x, m) | o(x, m)).$ for all $m, m' \in \mathcal{M}, x \in \mathcal{X}$ equivalent to $o^c(X^*, m) \mid o(X^*, m) \perp M$

MAR with shifts in conditional distribution between patterns

$$
\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ N A & x_{2,2} & x_{2,3} \\ N A & N A & x_{3,3} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}
$$

CIMAR

 $p^*(x_1, x_2 \mid x_3, M = m_1) = p^*(x_1, x_2 \mid x_3, M = m_2) = p^*(x_1, x_2 \mid x_3, M = m_3) =$ $p^*(x_1, x_2 | x_3)$

Distrib. of $X_1, X_2 \mid X_3$ is not allowed to change from one pattern to another, though the marginal distrib. of X_3 can change.

PMM-MAR

$$
p^*(x_1, x_2 \mid x_3, M = m_3) = p^*(x_1, x_2 \mid x_3)
$$

Both distrib. of observed variables and conditional ones can change from pattern to pattern.

MCAR: No change allowed.

$$
m\in\mathcal{M}, m'\in\mathcal{M}, x\in\mathcal{X}, p^*(x)=p^*(x\mid M=m)=p^*(x\mid M=m')
$$

Relationships between the M(N)AR conditions

(Non) Identifiability under non-parametric MAR

Definition: Imputing with a mixture of distribution

 $p^*(o^c(x, m) \mid o(x, m))$ is identifiable from $\mathcal{M}_0 \subset \mathcal{M}$ if there exists some weights $w_{m'}(o(x, m))$ (summing to 1) such that the mixture

 $h^*(o^c(x,m) \mid o(x,m)) = \sum_{m'} w_{m'}(o(x,m))p^*(o^c(x,m) \mid o(x,m), M = m')$ $m' \in \mathcal{M}_0$

satisfies $p^*(o^c(x, m) | o(x, m)) = h^*(o^c(x, m) | o(x, m))$.

Proposition: Identifiability under PMM-MAR is not trivial

Assume $|\mathcal{M}| > 3$. For any pattern $m \in \mathcal{M}$, $p^*(o^c(x, m) | o(x, m))$ is

- identifiable from any other pattern $m' \neq m$ under CIMAR,
- is not identifiable from any single pattern $m' \neq m$ under PMM-MAR.

If $\left|\sum_{j=1}^d m_j\right| > 1$, $p^*(o^c(x, m) \mid o(x, m))$ is not identifiable from L_m , the set of patterns for which $o^c(x, m)$ is observed. $L_m = \{m' \in \mathcal{M} : m'_j = 0 \text{ for all } j \text{ such that } m_j = 1\}.$

• Consider the following mixture of distribution

$$
h^{*}(x_{j} | x_{-j}) = \sum_{m \in L_{j}} \frac{\mathbb{P}(M = m)}{\sum_{m \in L_{j}} p^{*}(x_{-j} | M = m)\mathbb{P}(M = m)} p^{*}(x | M = m),
$$

with $L_j = \{m \in \mathcal{M}: m_j = 0\},$ the patterns where x_j is observed

Theorem: Identifiability of the right conditional distribution Assume PMM-MAR holds,

$$
h^*(x_j | x_{-j}) = p^*(x_j | x_{-j}), \text{ for all } x_{-j} \text{ with } p^*(x_{-j}) > 0
$$

At λ_j , one can reduce the $|\mathcal{M}|$ patterns to two, one where λ_j is missing, and one where it is observed. Though these two aggregated patterns are mixtures of several patterns $m \in \mathcal{M}$, MAR implies that both aggregated patterns have the same conditional distribution $X^{\ast}_j \mid X^{\ast}_{-j}$

Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For $j \in \{1, ..., d\}, t \geq 1$ use a univariate imputation to sample new imputed values $x_j^{(t+1)} \sim \rho^t(x_j \mid x_{-j}^{(t)})$ $\chi_{-j}^{(t)}$), where $\chi_{-j}^{(t)} = \{x_{l}^{(t)}\}$ $\binom{1}{l}$ \neq the imputed $&$ observed values of other variables except *at the tth iteration.*

3. Iterate until convergence

1. Fill NA with plausible values to get an initial completed dataset

2. For $j \in \{1, ..., d\}, t \geq 1$ use a univariate imputation to sample new imputed values $x_j^{(t+1)} \sim \rho^t(x_j \mid x_{-j}^{(t)})$ $\boldsymbol{x}_{-j}^{(t)}$), where $\boldsymbol{x}_{-j}^{(t)} = \{\boldsymbol{x}_{l}^{(t)}\}$ $\binom{1}{l}$ \neq the imputed & observed values of other variables except *at the tth iteration.*

3. Iterate until convergence

Theorem shows that if we assume to have access to the true distribution $p^*(x_{-j})$ (assume x_{-j} is well imputed), we can impute according to the true distribution $p^*(x_j | x_{-j})$ by drawing from the conditional distrib. of $X_j\mid X_{-j}$ learned from all patterns in which x_j is observed

FCS approach can identify the right conditional distributions under PMM MAR

What is a good imputation method under MAR?

- \triangleright both conditional and marginal **distribution shifts** can occur for different patterns under MAR.
- ▷ conditional shifts are handled with FCS

An ideal imputation method should

- (1) be a distributional regression method,
- \triangleright (2) be able to capture nonlinearities in the data.
- (3) be able to deal with distributional shifts in the observed variables, $>$ (4) be fast to fit,

1-3 are crucial for imputation under MAR

4 is only relevant to reduce the computational burden.

Rk: Block-wise FCS (multi-output methods to impute variables as blocks) should not be used: do not recover the correct distribution

- (1) be a distributional regression method,
- (2) be able to capture nonlinearities in the data,
- (3) be able to deal with distributional shifts in the observed variables,

- (1) be a distributional regression method,
- (2) be able to capture nonlinearities in the data,
- (3) be able to deal with distributional shifts in the observed variables,

▷ mice-cart/RF estimate a tree, a forest, on observed data and then draw imputations from the leaves (approx conditional distribution) whereas distributional forest 21 is a distributional method

²¹ Cevid et al., Distributional Random Forests. JMLR. 2022

Forests generalize poorly outside of the training set

Ex: Variables income & age with MAR missing values in income

Figure 1: True distribution against a draw from different imputation methods.

DRF, a distributional method $>$ mice-RF but fails to deal with the covariate shift (centering \approx 2 instead of 5).

Finding an imputation method that meets (1) - (4) is still an open problem!

Gaussian relation with shifts Non linear relation with shifts

Ex with $d = 6$, $n = 1500$, 20% NA and CIMAR, $X_{Q^c} = \mathbf{B}f(X_Q) +$ $\sqrt{ }$ $\overline{\mathcal{L}}$ ε_1 ε2 ε3 \setminus $\Big\}$

Energy distance²² between imputed $\&$ real data

$$
d(H, P^*) = 2\mathbb{E}[\|X - Y\|_{\mathbb{R}^d}] - \mathbb{E}[\|X - X'\|_{\mathbb{R}^d}] - \mathbb{E}[\|Y - Y'\|_{\mathbb{R}^d}],
$$

where $\|\cdot\|_{\mathbb{R}^d}$ is the Euclidean metric on \mathbb{R}^d , $X\sim H$, $Y\sim P^*$ and $X',$ Y' are independent copies of X and Y .

²²Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

Gaussian relation with shifts Non linear relation with shifts

Ex with $d = 6$, $n = 1500$, 20% NA and CIMAR, $X_{Q^c} = \mathbf{B}f(X_Q) +$ $\sqrt{ }$ $\overline{\mathcal{L}}$ ε_1 ε2 ε3 \setminus $\Big\}$

Energy distance²² between imputed $\&$ real data

$$
d(H, P^*) = 2\mathbb{E}[\|X - Y\|_{\mathbb{R}^d}] - \mathbb{E}[\|X - X'\|_{\mathbb{R}^d}] - \mathbb{E}[\|Y - Y'\|_{\mathbb{R}^d}],
$$

where $\|\cdot\|_{\mathbb{R}^d}$ is the Euclidean metric on \mathbb{R}^d , $X\sim H$, $Y\sim P^*$ and $X',$ Y' are independent copies of X and Y .

 22 Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

credit: Krystyna Grzesiak, Michal Burdukiewicz²³ 230 scenarios (10 missing values patterns 23 different-size datasets)

 23 imputomics: web server and R package for missing values imputation in metabolomics data. Bioinformatics 2024.

credit: Krystyna Grzesiak, Michal Burdukiewicz²³ 230 scenarios (10 missing values patterns 23 different-size datasets)

 23 imputomics: web server and R package for missing values imputation in metabolomics data. *Bioinformatics* 2024.

- ▷ Non-parametric PMM view of missing (different environments) helps understand non-parametric imputation under MAR
- \triangleright Identification result for FCS: the right conditional distributions are identifiable under MAR with no parametric assumption
- ▷ Identification under the weakest MAR assumption.²⁴ Beyond MAR. ∀j $\mathcal{L}\in\{1,\ldots,d\},\forall\mathsf{x}\in\mathcal{X}$, CIMNAR: $\mathbb{P}(M_i=1|\mathsf{x})=\mathbb{P}(M_i=1|\mathsf{x}_{-i})$

21

- ▷ Non-parametric PMM view of missing (different environments) helps understand non-parametric imputation under MAR
- \triangleright Identification result for FCS: the right conditional distributions are identifiable under MAR with no parametric assumption
- ▷ Identification under the weakest MAR assumption.²⁴ Beyond MAR. ∀j $\mathcal{L}\in\{1,\ldots,d\},\forall\mathsf{x}\in\mathcal{X}$, CIMNAR: $\mathbb{P}(M_i=1|\mathsf{x})=\mathbb{P}(M_i=1|\mathsf{x}_{-i})$
- \triangleright The quest for an FCS imputation method meeting all 3 points is open
- \rhd mice-DRF promising (code available)
- \triangleright Imputation scores with missing values that are proper under MAR: ranking imputation methods
- ▷ Simulations MAR for benchmarks

²⁴ Deng et al., (2022) and Fang (2023) showed identifiability for GAN imputation under CIMAR

Thank you

$$
\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & N A & x_{2,3} \\ N A & x_{3,2} & x_{3,3} \end{pmatrix}, \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}.
$$

whereby (X_1, X_2, X_3) are independently uniformly distributed on [0, 1].

$$
\mathbb{P}(M = m_1 | x) = \mathbb{P}(M = m_1 | x_1) = x_1/3
$$

$$
\mathbb{P}(M = m_2 | x) = \mathbb{P}(M = m_2 | x_1) = 2/3 - x_1/3
$$

$$
\mathbb{P}(M = m_3 | x) = \mathbb{P}(M = m_3) = 1/3.
$$

Imputing with a mixture of patterns

We want to impute X_1 in the third pattern (with X_2 and X_3 observed)

Figure 2: Distrib. of X_1 in different patterns. Left: Distrib. of $X_1 \mid M = m_3$. Middle: $(X_1 | M = m_1)$. Right: Distribution of all patterns for which X_1 is observed (Mixture of the distribution of X_1 in pattern 1 and 2).

• As the distrib. of (X_2, X_3) in each patterns is the same, this shows the change of $X_1 | X_2, X_3$ from m_3 to m_1 : PMM-MAR allows change in the conditional distrib. over patterns.

• Note that the distrib. $X_1 | X_2, X_3$ in m_3 corresponds to the mixture of distribution of $X_1 | X_2, X_3$ in the patterns where X_1 is observed.

Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role"²⁵

Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role"²⁵

Complete case analysis: delete incomplete samples

- Bias: Resulting sample not representative of the target population
- Information loss: Take a matrix with d features where each entry is missing with probability $1/100$, remove a row (of length d) when one entry is missing

 $d = 5$ \implies \approx 95% of rows kept $d = 300 \implies \approx 5\%$ of rows kept

²⁵Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.