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(Online) Decision support tool with quantified uncertainty

Ex: Traumatrix project1: Reducing under and over triage for improved resource

allocation in trauma care

Major trauma: brain injuries or hemorrhagic shock from car accidents, falls,

stab wounds, etc. ⇒ requires specialized care/resources in ”trauma centers”

Many patients are misdirected: human/ economical costs

Clinical trial launched in 2025: real-time implementation of Machine Learning

models in ambulance dispatch via a mobile data collection application

1www.traumabase.eu - https://www.traumatrix.fr/ 2



Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

▷ 40000 trauma patients

▷ 300 heterogeneous features from pre-hospital and in-hospital settings

▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Weight Lactacte Blood TXA. Y

Press.

Beaujon fall 54 m 85 NA 180 treated 0

Pitie gun 26 m NA NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NA NA 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect (with missing values2): Administration of the

treatment tranexamic acid (TXA), given within 3 hours of the accident, on the

outcome (Y ) 28 days in-hospital mortality for trauma brain patients

2Mayer, I., Wager, S. & J.J. (2020). Doubly robust treatment effect estimation with incomplete

confounders. Annals Of Applied Statistics. (implemented in package grf). 3



Causal inference: ”what would happen if?”

Causal inference (simplest) question

Assume a policy/intervention/treatment W causes an outcome Y

Aim: estimate the effect as accurately as possible (bias & variance)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

ATE with Risk Difference: difference of the average outcome had everyone

gotten treated and the average outcome had nobody gotten treatment

4



Causal inference: ”what would happen if?”

Potential Outcome framework (Neyman, 1923; Rubin, 1974)

▷ ( X︸︷︷︸
covariates

,

treatment︷︸︸︷
W , Y (1),Y (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

▷ Individual causal effect of the binary treatment: ∆i = Yi (1)− Yi (0)

Problem: ∆i never observed (only one outcome is observed per indiv.)
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Data sources & evidences to estimate the treatment effect

Randomized Controlled Trial (RCT)

▷ gold standard (allocation )

▷ same covariate distributions in

treated and control groups

⇒ High internal validity

▷ expensive, long, ethical limitations

▷ small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

▷ trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

▷ “big data”: low quality

▷ lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

▷ low cost

▷ large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

▷ representative of the target

populations

⇒ High external validity
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Leverage both RCT and observational data

RCT

+ No confounding

− Trial sample different from the population

eligible for treatment

(big) Observational data

− Confounding

+ Representative of the target

population

We can use both to 3 . . .

▷ . . . validate observational methods, correct for confounding bias

▷ . . . improve estimation of heterogeneous treatment effects

▷ . . . generalize the treatment effect to a target population (data

fusion, transportability, recovery from selection bias)4,5

The FDA has greenlighted the usage of the drug Ibrance to men with

breast cancer, though clinical trials were performed only on women.

→ Reduce drug approval times and costs

3Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. Statistical Science.
4Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
5Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for

Extending Causal Inferences From a RCT to a Target Population American J. of Epidemiology.
6
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Predicting treatment effects from 1 trial to another population

Bénédicte Colnet (Corps des Mines, French social security’s direction), Imke Mayer (Owkin)

Erwan Scornet (X - Sorbonne Université), Gaël Varoquaux (Inria) 7



Generalization task from one RCT to a target population

Two data sources:

▷ A trial of size n with pR (x) the

probability of observing individual

with X = x ,

▷ A sample of the target population

of interest – for e.g. a national co-

hort (resp. m and pT (x)).

Covariates distribution not the same in the RCT & target pop:

pR(x) ̸= pT(x) ⇒ τR := ER[Y (1)− Y (0)]︸ ︷︷ ︸
ATE in the RCT

̸= ET[Y (1)− Y (0)] := τT︸ ︷︷ ︸
Target ATE
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Assumptions for ATE identifiability in generalization

Overlap assumption6

∀x ∈ X, pR(x) > 0 and supp(PT (X )) ⊂ supp(PR(X ))

The observational covariate support is included in the RCT’s support. Every

individual in the target population could have been selected into the trial

Transportability of the conditional average treatment effect

(CATE)7

ER[Y (1)− Y (0) | X ]︸ ︷︷ ︸
τR (X )

= ET[Y (1)− Y (0) | X ]︸ ︷︷ ︸
τT(X )

Need to know which variables are shifted treatment effect modifiers

The treatment effect depends on covariates in the same way in the source

(RCT) and target population

6If this is too strong, we could generalize on a different target population: the target population

for which eligibility criteria of the trial are ensured
7Equivalent formulation with sampling mechanism S: (Y (1) − Y (0)) ⊥⊥ S | X 9



Identifiability and estimation for generalization: weighting

Generalization of local effects (i.e. conditional effects/strata)

τT = ET[Yi (1)− Yi (0)] = ET[ET[Yi (1)− Yi (0)|X ]]

= ET [τT(X )] = ET [τR(X )] Transportability CATE

= ER

[
pT(X )

pR(X )
τR(X )

]

IPSW: inverse propensity sampling weighting

τ̂π,n,m =
1

n

∑
i∈R

p̂T(Xi )

p̂R(Xi )
Yi

(
Wi

π
− 1−Wi

1− π

)
,

p̂R,n(x) :=
1
n

∑
i∈R 1Xi=x , π proba. of treatment assignment in trial

Re-weight, so that the trial follows the target sample’s distribution

Idea of relying on an external representative sample to reweight is recent8

8Cole & Stuart. (2010). Generalizing from RCT to target pop. American J. of Epidemiology.

10
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∑
i∈R 1Xi=x , π proba. of treatment assignment in trial

Re-weight, so that the trial follows the target sample’s distribution

Idea of relying on an external representative sample to reweight is recent8

Open questions remain: Impact of the two data sources’ sizes n & m?

8Cole & Stuart. (2010). Generalizing from RCT to target pop. American J. of Epidemiology.
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Reweighting the RCT: finite sample & asymptotic analysis9

τ̂π,n,m =
1

n

∑
i∈R

Estimated with T︷ ︸︸ ︷
p̂T(Xi )

p̂R(Xi )︸ ︷︷ ︸
Estimated with R

Yi

(
Wi

π
− 1−Wi

1− π

)
,

Asymptotic properties

Letting lim
n,m→∞

m/n = λ ∈ [0,∞]

lim
n,m→∞

min(n,m) Var [τ̂π,n,m] = min(1, λ)

(
Var [τ(X )]

λ
+ Vso

)
Variance depends on the size of the two data sets, n and m

▷ If target >> trial, m/n → ∞, (i.e., λ = ∞): asymptotic variance =

Semi-Oracle’s one and depends on the ratio of probabilities.

▷ If trial >> target m/n → 0, (i.e., λ = 0): asymptotic variance

depends on var. of Conditional Average Treatment Effect Var [τ(X )].

9Colnet, J.J et al. 2022. Reweighting the RCT for generalization: finite sample analysis and

variable selection. JRSSA.
11
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Impact for data collection

9Colnet, J.J et al. 2022. Reweighting the RCT for generalization: finite sample analysis and

variable selection. JRSSA.
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Generalization from Crash 3 trial10 to the Traumabase

CRASH3

▷ Multi-centric RCT - 29 countries

▷ 9000 individuals - develp. countries

▷ Positive effect for moderately

injured patients

Traumabase

▷ Observational sample

▷ 8200 patients with brain trauma

▷ Deleterious/No evidence for an

effect of TXA
Comparison of trials, observational data, and generalization estimates

x-axis: Estimation of the Average Treatment Effect, Confidence intervals with bootstrap

y -axis: Estimation methods (estimation of nuisances: parametric: logistic regression - non

parametric: forests)
10(2019). Effects of tranexamic acid on death in patients with acute trauma. brain injury. Lancet.

12



Many medical and statistical challenges

• 1) Shifted effect modifiers not available in Traumabase11. Missing covariates

in one/both sets: sensitivity analysis

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• 2) Missing values: Missing values (NA) in both RCT and Obs data12

• 3) Which covariates should be include? Would adding prognostic variables

reduce the variance as in the classical case?13

• 4) Clinicians are more interested in the risk ratio than the risk difference14

11Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. J. of Causal Inference.
12Mayer, J.J. 2021. Generalizing effects with incomplete covariates Biometrical Journal.
13Colnet, J.J et al. 2023. Reweighting the RCT for generalization: finite sample analysis and

variable selection. JRSSC.
14Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize? 13
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Comparing two average situations

Binary outcome: P [Y (w) = 1] = E [Y (w)] and P [Y (w) = 0] = 1− E [Y (w)].

Absolute measures

τ RD := E [Y (1)]− E [Y (0)] , τNNT := (τ RD)−1.

• Number Needed to Treat (NNT): how many individuals should be treated

to observe one individual answering positively to treatment.

Relative measures

τ RR :=
E [Y (1)]

E [Y (0)]
, τ SR :=

P [Y (1) = 0]

P [Y (0) = 0]
=

1− E [Y (1)]

1− E [Y (0)]
,

τOR :=
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

• A null effect now corresponds to a Risk Ratio of 1

• Survival Ratio (SR) corresponds to the RR with swapped labels Y

• RR is not symmetric to the choice of outcome 0 and 1 –e.g. counting the

living or the dead while Odds Ratio (OR) is
14



Different treatment measures give different impressions

An example: Randomized Control Trial (RCT) from Cook and Sackett (1995)

• Y = 1 stroke in 5 years and Y = 0 no stroke

• W antihyperintensive therapy

• Feature X (blood pressure), X = 1 low baseline risk (15/1000 versus 2/10)

P [Y (0) = 1 | X = 0] ≥ P [Y (0) = 1 | X = 1]

τRD τRR τSR τNNT τOR

All (PR) -0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

• RD: treatment reduces by 0.045 the probability to suffer from a stroke

• RR: the treated has 0.6 × the risk of having a stroke comp. with the control

• SR: increased chance of not having a stroke when treated (factor 1.05).

• NNT: one has to treat 22 people to prevent one additional stroke

• OR ≈ RR in a stratum where prevalence of the outcome is low

15
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• RD is heterogeneous with X while RR is homogeneous with X

• Heterogeneity’s property defined w.r.t. (i) covariates & (ii) a measure

• Impact of the baseline risk: with 3% baseline mortality reduced to 1% by

treatment, RD shows a 0.02 drop, while RR shows controls have three times

the risk: RD suggests a small effect; RR highlights a larger one
15



Formalization of causal measures’s properties: toward guidance

16



A desirable property: collapsibility

Collapsibility: Population’s effect is equal to a weighted sum of local

effects (conditional effects)

Direct collapsibility - weights are equal to population’s proportions

τ = E [τ(X )]

• Risk Difference is directly collapsible

τRD τRR τSR τNNT τOR

All (PR) −0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

τ RD

R = pR(X = 1)× τ RD

R (X = 1) + pR(X = 0)× τ RD

R (X = 0)

−0.0452 = −0.47× 0.006− 0.53× 0.08.

Useful for generalization! (replacing pR by pT) 17



Summary of causal measure properties

Direct collapsibility

E [τ(X )] = τ

Collapsibility: weights depend on the baseline distribution Y (0)

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

Logic respecting (Simpson paradox)

τ ∈
[
min
x
(τ(x)),max

x
(τ(x))

]
.

Ex. OR: Overall population, τOR ≈ 0.26 τOR|F=1 ≈ 0.167 and τOR|F=0 ≈ 0.166

Measure Dir. collapsible Collapsible Logic-respecting

Risk Difference Yes Yes Yes

Number Needed to Treat No No Yes

Risk Ratio No Yes Yes

Survival Ratio No Yes Yes

Odds Ratio No No No
18



Back to generalizability from one RCT to a Target pop.

Generalizing Conditional Outcome Local effects/CATE

Assumption ER[Y (w) | X ] = ET[Y (w) | X ] τR(X ) = τT(X )

Variables All shifted prognostic covariates All shifted effect modifiers

Identification ET [Y (w)] = ET [ER [Y (w) | X ]] ER

[
pT(X )
pR(X )

wT(Y (0),X ) τR(X )
]

Estimation Regression (G-formula) Weighting

• Generalize local effects only for collapsible measures, need info. on Y (0)

• Generalizing conditional outcome require stronger assumptions

• Estimation challenges: using with parametric models (logistic reg.) or

non-parametric ones (i.e. random forests). Ex for RR15: doubly robust estim.

using influence function theory, convergence rate, confidence intervals, etc.

15Boughdiri, J.J., Scornet. (2024). Estimating Risk Ratios in Causal Inference. 19



From one to multiple Randomized Control Trials (RCTs)

Meta-analysis (aggregating estimated effects from multiple studies) is at

the top of the pyramid of evidence based medicine.

Meta-analysis still faces significant challenges:

• Be careful with aggregation of causal measures

• Heterogeneity across studies: sample size, population, center effects

• Difficulty to share individual-level data: data silos & regulations 20



Going beyond meta-analysis with federated causal inference16

Bridging causal inference and federated learning to improve treatment

effect estimation from decentralized data sources

16 Rémi Khellaf, Aurelien Bellet, J.J. (2025). Multi-centric ATE estimation AISTAT.
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16 Rémi Khellaf, Aurelien Bellet, J.J. (2025). Multi-centric ATE estimation AISTAT.
21



Going beyond meta-analysis with federated causal inference16

Bridging causal inference and federated learning to improve treatment

effect estimation from decentralized data sources
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Our setting: decentralized heterogeneous RCTs

We consider K decentralized and potentially heterogeneous RCTs

(studies) from different sources and want to estimate the ATE given by

τ = E
(
E(Y (1) − Y (0) | H)

)
Source Obs. Covariates Treat. Outcome

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8
...

...
...

...
...

...
...

2 1 4.5 5.0 F 1 4.1
...

...
...

...
...

...
...

K 1 3.7 2.0 F 0 2.8
...

...
...

...
...

...
...

K nK 2.5 1.7 M 0 3.2

hehr

in

W

X

Y

H

How to estimate τ without pooling together individual-level data?
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Three types of federated estimators

Ex: linear outcome model for all studies ∀k: Y (w)
k,i = c (w) + Xk,iβ

(w) + ε
(w)
k,i

Baseline: estimator τ̂pool =
1
n

∑n
i=1 X

′
i (θ̂

(1)
pool − θ̂

(0)
pool) on pooled data

θ̂
(w)
pool = (ĉ

(w)
pool, β̂

(w)
pool) =

(
X ′(w)⊤

X ′(w))−1
X ′(w)⊤

Y (w) with X ′(w)
= [1,X (w)]

Meta analysis

Aggregation wk : sample size weights (SW) or inverse variance weights (IVW) 23
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Statistical perf. & communication costs

W

X

YH

Heterogeneity: Source

membership H only affects

treatment allocation:

Wk,i ∼ B(pk)

Unbiased estimators but different asymptotic variance & communication costs:

Estimator V∞ Com. rounds Com. cost

τ̂Meta-SW
σ2

n

K∑
k=1

ρk

pk (1 − pk )
+

1

n
∥β(1)−β

(0)∥2
Σ 1 O(1)

τ̂Meta-IVW

( K∑
k=1

(
σ
2 nρk

pk (1 − pk )
+

1

nk
∥β(1)−β

(0)∥2
Σ

)−1
)−1

1 O(1)

τ̂1S-SW Vpool 2 O(d)

τ̂1S-IVW Vpool 2 O(d2)

τ̂GD Vpool T + 1 O(Td)

τ̂pool Vpool =
σ2

n
1

p(1−p)
+ 1

n
∥β(1) − β(0)∥2Σ — —

with ρk = P(H = k) = E
[
nk
n

]
and p =

∑K
k=1

nk
n
pk

24



Federated Causal Inference/Generalization

Federated RCTs: Guidelines Meta & GD predilection regimes

▷ Small sample size: Gradient Descent: other need n
(w)
k ≥ d for k,w

▷ Heterogeneity: Shift across sources (τ̂meta−IVW biased); different

baseline outcomes (τ̂meta handles center effects, τ̂GD needs adjustmen-

t/prior knowledge on the model)

Multiple Randomized Control Trials, Multiple Observational data,

Multiple Causal Measures
Real world data strenghten clinical evidences

RCT 1
X1 X2 X3 X4 X5 W Y

RCT 2
X1 X2 X3 X4 X5 X6 W Ÿ

OBSERVATIONAL DATA A
X1 X2 X3 X4 X5 X6 X7 X8 W Y

Ho
sp

ita
l 1

Ho
sp

ita
l 2

Ho
sp

ita
l 3

OBSERVATIONAL DATA B
X1 X2 X3 X4 X5 X6 X7 X8 OBSERVATIONAL DATA C

X1 X2 X3 X4 X5 X6 X7 X8 AUXILIARY DATA
S1 S2 S3 S4

TARGET 
POPULATION

TREATMENT
ESTIMATE(S)

NEW PATIENTS TO TREAT
X1 X2 X3 X4 X5 X6 X7 X8 W

black correspond to sporadically & systematic missing covariates

25



Challenges for personalized treatment effects recommendation

Formalization needed due to causal measure subtleties & aggregation

On going/future work:

▷ Provide robust privacy guarantees (differential privacy)

▷ Complex outcome17/treatment/features: distributions, survival, time

▷ Policy learning: which treatment to give to each patient at what time?

▷ Uncertainty quantification in treatment recommendation

Clément Berenfeld, Ahmed Boudghiri, Mathieu Even, Agathe Chabassier, Laura Fuentes, Rémi

Khellaf, Charlotte Voinot - Some are funded by PEPR Santé numérique SMATCH.

Aurelien Bellet (Inria), Erwan Scornet (Sorbone Univ.)
17Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis
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