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Missing values are ubiquitous in various fields

Most off-the-shelf supervised
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clinical variables which has surprisingly received

Traumabase clinical health records. little attention up to now.
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Notation

xn CRM™9: complete data (unavailable).

z, [{R x na}"™9: incomplete data (available).

m, [0, 1}"*9: mask. Os (1s) indicate the observed (missing) values.
yn CRI': the response vector.

91 85 9.1 85 00 4.6
o |21 ma) _f2r 35| o1 (79
" lna 96T [67 96["™ T |1 of YT |83

na na 42 5.5 1 1 4.6

Each row of xp,z,, mp, yn are realization of the generic random variable
X, Z,M)Y.

The incomplete vector is related to X and M by:

Z =X [[M—M)+na M
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Problem setting

o Working hypothesis:
In this work, we assume that the response is linearly generated:
Assumption (Linear model)
Y =6+ X, 8Fe, X [RF, ¢ CNKO,0?). }

@ Problem formulation:

We wish to solve a least squares regression problem with missing values:

E[(Y —t@))].

min
f: {Rxna}d -R
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Characterizing optimal regressors: the Bayes predictor

o A Bayes predictor f "5 the a minimizer of the loss (in our case least
squares),
f* CJargmin E {(Y —f (Z))z} .
f: {Rxna}?~R

@ For the least squares loss, we know it is the conditional expectation of the
response given the input:

V" In the complete case: f* = E[Y [X] = [3, X 3 So.
v In the incomplete case: f* = E[Y|Z] = E [Y [M, Xaps(w) |
@ In the incomplete case, the Bayes predictor need not be linear.

Example

Let Y = X1 + Xz + &, where X, = exp(X1) + 1. Now, assume that only X; is
observed. Then the Bayes predictor is:

f(Xl) =X + exp(Xl).
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The Bayes predictor for incomplete data

Assumption (Gaussian pattern mixture model)

X | (M = m) CRI(u™, ™).

Proposition (Expanded Bayes predictor)

Under our assumptions (linear model + Gaussian pattern mixture model),
the Bayes predictor takes the form

() = W,60]

where the parameter 6 [CRP is a function of 3, (1™ )m gm13e and
(X™)m gm13¢, and the random variable W [RP is the concatenation of
j =

1,...,29 blocks, each one being

(]lM:mj ’ Xobs(mj)]lM:mj) .

where W is an expansion of Z.
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The Bayes predictor for incomplete data

Assumption (Gaussian pattern mixture model)

X | (M = m) CRI(u™, ™).

Proposition (Expanded Bayes predictor)

Under our assumptions (linear model + Gaussian pattern mixture model),
the Bayes predictor takes the form

f*(2)=0,6]
where (ex. d=2)

1 X1,1 X1,2 0 0 0 0 0

1 X2’1 X2,2 0 0 0 0 0

0 0 0|1 x31 |0 0|0

|l o o o|l1 x:|0 o0]oO

W - 0 0 0 0 0 1 Xs5,2 0

0 0 0[]0 0|1 X2]0

0 0 0|0 0|0 0|1

0 0 0|0 0|0 0|1
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Outline of the proof
Under the linear assumption we have:
f*(2) = E[Y|Z]

=E[Bo+BTX | Z]

=E[Bo + BTX | M, Xops(m)]

= Bo + Babs(myXobsv) + Brnisomy EXmisy | M, Xops )]
Moreover under the Gaussian per pattern assumption,

EXmism) | M, Xopsvy] = 6 + T "Xaosm)

where 6 and T depend on zM and ¥M.

Thus,
* T
f5(Z) = Bo + Brisowyf + (Bovsv) + 1) Xobs(w)

i.e., the Bayes predictor is linear per pattern.
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The expanded linear model

f %) = W, 6Chere (example d = 2):

1 X1,1 X122 0 0|0 010
1 X211 X222 0 0|0 0|0
0 0 01 x3110 0|0
W — 0 0 0|1 X110 0|0
0 0 0[]0 0|1 x,]|0
0 0 0[0 0|1 x2|0
0 0 0|0 0|0 01
0 0 0|0 0|0 01

Problem: the dimension of W is

:zd:( ) (k+1)=29"1x(d +2).

k=0
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The linear approximation model

The Bayes predictor can be expressed as a polynome of X and M, which can be
truncated to a first order approximation.

Definition (Linear approximation)

We define the linear approximation of f* as

approx(z) ﬂOO +Zﬂj OMJ +Zﬂj*xj(1 MJ)

j=1 j=1
y
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Estimation of the linear approximation model

o f* can be estimated by fitting a linear model on X imputed by 0

approx
concatenated with the mask.

@ This is equivalent to jointly fitting a linear model on X and optimizing an
imputation constant for each variable.

X1 X X1 Xo X1 My X2 M

1.1 32 1.1 32 1.1 0 32 0

NA 0.1 C: 01 0 1 01 O

Given | 4.6 NA |, 46 Cy| = |46 0 0 1
40 0.9 40 0.9 40 0 09 O

NA 2.2 C, 22 0 1 22 0

Indeed,
Bi {Xj(l - Mj) + Cij} = ﬁij(l - Mj) + {6]Cj} M;.
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Finite sample bounds for linear predictors

The Bayes predictor and its linear approximation offer different bias-variance
tradeoffs.

Assumption

@ Y = fgayes(Z) + noise(Z) where noise(Z) is a centred noise conditional on Z
and such that there exists o > 0 satisfying V[Y |Z] < o almost surely,

° [anesg <L,
o Supp(X) L, 1]°.

This assumption is required for the next two results.
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Finite sample bounds for linear predictors
Under these assumptions:
Theorem

@ The risk of the OLS estimate clipped at L for the expanded model satisfies

2971(d +2)(1 + logn)
n

2dC1
n+1

= R(TLfBemnded) — 0% < cmax{o? L%}

@ The risk of the OLS estimate clipped at L for the linear approximation
model satisfies

2d(1 + logn)
n

R(Tufy, ) —0® <c max{o? L’} +64(d + 1)°L

It follows that the risk of the expanded model is lower than that of the linear

approximation model if:
2d
n=—
d
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@ Multilayer perceptron approximation
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Why a Multilayer perceptron?
A Multilayer Perceptron with:

@ Rectified Linear Units activation functions for hidden units
(ReLU(x) = max(0,x)),

@ l|dentity activation for the output unit,

produces a prediction function that is piecewise affine.

—
E
°
4
=]
o
£

Jndano uopdund

Input dim 2

Figure from Hanin et al. 2019
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Bayes consistency of the MLP

Theorem (MLP)

Assume that the Bayes predictor takes the form described earlier (expanded Bayes
Predictor). A MLP:

e with one hidden layer containing 2¢ hidden units

e ReLU activation functions

e which is fed with the concatenated vector (X, M) where X is imputed by zero
is Bayes consistent.

Proof: We show that there exists a configuration of the parameters of the MLP so
that the resulting predictor is the Bayes predictor.
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Proof 1/3 - Learned imputations

Xr— Parameters hidden layer:

w@® — [W(X),W(M)] R4

2 O\ b® CRF

— Y

m; 07 Parameters output layer:

w® Rt

m, Q b® R
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Proof 1/3 - Learned imputations

Xr— Parameters hidden layer:

W(l [W(X),W(M)] R4
OO
O
m; — 07 Parameters output layer:

w® R
m, C) b® R
The activation of hidden unit Kk for input (x, m) is:

= W% +w,"'m + b
_W‘X)x+w [Gl.m+b®

_wX) (X) (1)
- Wk,obs(m)XObS(m) + Wk,mis(m)Gkvmis(m) + by

where G (reparametrization of W(M)) can be seen as learned imputations.
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Proof 2/3 - one-to-one mapping mdp/hidden unit

The proof shows that the parameters of the MLP can be chosen so that:

@ all points with missing data pattern my exclusively activate hidden unit k, and
hidden unit K is exclusively activated by points with missing data pattern my.

2d
y(x,mg) = ZWf)ReLU(ah) +b®
h=1

h,mis(my)

2d
=D WEIRELUWEL, e Fobs(m) + Wil s my Cmis(ne) + B5) + b
h=1

_w® (X) (X) (1) 2
=W, (Wk,obs(mk)XObS(mk) + Wk,mis(mk)Gkvmis(mk) + by ) +b®

i.e, the MLP produces a predictor y(x, mg) that is linear per pattern.

@ The slopes and biases of y(x, my) equal those of the Bayes predictor.
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Proof 3/3 - vizualisation of a bayes consistent MLP
We simulated data (X, M) in 2 dimensions, and based on our proof, built a MLP
(with 4 hidden units) that is Bayes consistent.

50 A

254

—254

—50

50 A

25

—254

—50 4

RelU(a_0) RelLU(a_1)
1 / I/
P -
RelLU(a_2) ReLU(a_3)
/ ¢ |
-
-50 0 50 100 50 0 50 100

y(x,m) = W?ReLU (a0) + W ?'ReLU (a1) + W, ReLU (az) + W ?ReLU (as) + b®
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Example of an optimized MLP in two dimensions.

RelLU(a_0) RelLU(a_1)
LJ S
20 1
_20- 4
ReLU(a_2) ReLU(a_3)
T 0 U
20 4
—-20 4
-10 -5 0 5 10 -10 -5 0 5 10

y(x,m) = WReLU (ao) + W ?ReLU (a1) + W, ?ReLU (az) + W{?ReLU (as) + b®
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Trading off estimation and approximation error

Number of parameters of:

@ a MLP with one hidden layer and 29 units:
(d +1)29+ 41

@ the expanded linear model:
(d +1)2¢71

The MLP is slightly overparametrized, and the number of parameters is
exponential in d.

However, contrary the the expanded linear model, the MLP provides a natural way
to reduce the model capacity by reducing the number of hidden units.
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e Empirical study
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Simulation models

The data (X, M) is generated according to 3 simulation models:

@ mixture 1:

P(X) =N (1,X)

PM) =&

Gaussian pattern mixture model with 1 component

Corresponds to a Missing Completely At Random (MCAR) problem

v

v vvy

@ mixture 3:
» P(XIM =m) =N (um, Xm), with 3 distinct Gaussian components.
» P(M) = &
» Gaussian pattern mixture model (with 3 components)

o selfmasking:

P(X) =N (1, )

P(M = 1]X;) = Probit (A (Xj — o))

Not an instance of pattern mixture model! (Theory does not hold)
Corresponds to a typical Missing Non At Random (MNAR) problem

v

v v vy
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Estimation Approaches

o EMLR: EM is used to fit a multivariate normal distribution for the
(p + 1)-dimensional random variable (X, ..., Xp,Y).

@ ConstantlmputedLR: Optimal imputation method.

e MICE: Conditional imputation with an iterative imputer (similar to the well
known MICE) followed by linear regression.

o ExpandedLR: Expanded linear model.

@ MLP: Multilayer perceptron with one hidden layer whose size is varied
between and 1 and 2¢ hidden units.
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Learning curves: Gaussian mixtures

Mixture 1 (MCAR)
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Learning curves: self-masking

Self-masked (MNAR)
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0.95
0.90 s NS
0854 e -

(o] e -

x 0.80 R <R ER] .‘;.’!_.\,---l D
0754 — 7

0.70 4 — ConstantimputedLR = MLP W1 |
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103 104
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Conclusion

Conclusion:
@ The Bayes-optimal predictor is no longer a linear function of the data.
o It is explicit under Gaussian assumptions, but high-dimensional.

@ Possible approximations include constant imputation and MLP, which can be
consistent.

The MLP adapts naturally to the complexity of the data.

Our risk-minimisation strategy is robust to the missing-value mechanism.
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