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Missing values are ubiquitous in various fields
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Traumabase clinical health records.

Most off-the-shelf supervised
learning methods cannot be
applied with missing values.

What to do:
Complete-case analysis?
Imputation prior to learning?
Expectation Maximization?

We will study the case of linear
regression with missing values,
which has surprisingly received
little attention up to now.
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Notation
xn ∈ Rn×d : complete data (unavailable).
zn ∈ {R × na}n×d: incomplete data (available).
mn ∈ {0, 1}n×d : mask. 0s (1s) indicate the observed (missing) values.
yn ∈ Rn: the response vector.

zn =


9.1 8.5
2.1 na
na 9.6
na na

 , xn =


9.1 8.5
2.1 3.5
6.7 9.6
4.2 5.5

 , mn =


0 0
0 1
1 0
1 1

 , yn =


4.6
7.9
8.3
4.6


Each row of xn, zn,mn, yn are realization of the generic random variable
X ,Z ,M,Y .

The incomplete vector is related to X and M by:

Z = X � (1−M) + na�M.
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Problem setting

Working hypothesis:

In this work, we assume that the response is linearly generated:

Assumption (Linear model)

Y = β0 + 〈X , β〉+ ε, X ∈ Rd , ε ∼ N (0, σ2).

Problem formulation:

We wish to solve a least squares regression problem with missing values:

min
f : {R×na}d→R

E
[
(Y − f (Z ))2

]
,
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Characterizing optimal regressors: the Bayes predictor
A Bayes predictor f ∗ is the a minimizer of the loss (in our case least
squares),

f ? ∈ argmin
f : {R×na}d→R

E
[
(Y − f (Z ))2

]
.

For the least squares loss, we know it is the conditional expectation of the
response given the input:

X In the complete case: f ? = E [Y |X ] = 〈β,X〉+ β0.

X In the incomplete case: f ? = E [Y |Z ] = E
[
Y |M,Xobs(M)

]
In the incomplete case, the Bayes predictor need not be linear.

Example
Let Y = X1 + X2 + ε, where X2 = exp(X1) + ε1. Now, assume that only X1 is
observed. Then the Bayes predictor is:

f (X1) = X1 + exp(X1).
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The Bayes predictor for incomplete data

Assumption (Gaussian pattern mixture model)

X | (M = m) ∼ N (µm,Σm).

Proposition (Expanded Bayes predictor)
Under our assumptions (linear model + Gaussian pattern mixture model),
the Bayes predictor takes the form

f ?(Z ) = 〈W , δ〉,

where the parameter δ ∈ Rp is a function of β, (µm)m∈{0,1}d and
(Σm)m∈{0,1}d , and the random variable W ∈ Rp is the concatenation of
j = 1, . . . , 2d blocks, each one being(

1M=mj , Xobs(mj )1M=mj

)
.

where W is an expansion of Z .
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The Bayes predictor for incomplete data

Assumption (Gaussian pattern mixture model)

X | (M = m) ∼ N (µm,Σm).

Proposition (Expanded Bayes predictor)
Under our assumptions (linear model + Gaussian pattern mixture model),
the Bayes predictor takes the form

f ?(Z ) = 〈W , δ〉,

where (ex. d=2)

W =



1 x1,1 x1,2 0 0 0 0 0
1 x2,1 x2,2 0 0 0 0 0
0 0 0 1 x3,1 0 0 0
0 0 0 1 x4,1 0 0 0
0 0 0 0 0 1 x5,2 0
0 0 0 0 0 1 x6,2 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
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Outline of the proof
Under the linear assumption we have:

f ?(Z ) = E[Y |Z ]
= E[β0 + βTX | Z ]
= E[β0 + βTX | M,Xobs(M)]
= β0 + βT

obs(M)Xobs(M) + βT
mis(M) E[Xmis(M) | M,Xobs(M)]

Moreover under the Gaussian per pattern assumption,

E[Xmis(M) | M,Xobs(M)] = θ + Γ>Xobs(M)

where θ and Γ depend on µM and ΣM .

Thus,
f ?(Z ) = β0 + βT

mis(M)θ +
(
βobs(M) + Γ

)T Xobs(M)

i.e., the Bayes predictor is linear per pattern.
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The expanded linear model

f ∗(Z ) = 〈W , δ〉 where (example d = 2):

W =



1 x1,1 x1,2 0 0 0 0 0
1 x2,1 x2,2 0 0 0 0 0
0 0 0 1 x3,1 0 0 0
0 0 0 1 x4,1 0 0 0
0 0 0 0 0 1 x5,2 0
0 0 0 0 0 1 x6,2 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1



Problem: the dimension of W is

p =
d∑

k=0

(
d
k

)
× (k + 1) = 2d−1 × (d + 2).
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The linear approximation model

The Bayes predictor can be expressed as a polynome of X and M, which can be
truncated to a first order approximation.

Definition (Linear approximation)

We define the linear approximation of f ? as

f ?approx(Z ) = β?0,0 +
d∑

j=1
β?j,0Mj +

d∑
j=1

β?j Xj(1−Mj).
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Estimation of the linear approximation model

f ?approx can be estimated by fitting a linear model on X imputed by 0
concatenated with the mask.
This is equivalent to jointly fitting a linear model on X and optimizing an
imputation constant for each variable.

Given

X1 X2
1.1 3.2
NA 0.1
4.6 NA
4.0 0.9
NA 2.2

,
X1 X2

1.1 3.2
C1 0.1
4.6 C2
4.0 0.9
C1 2.2

⇔
X1 M1 X2 M2
1.1 0 3.2 0
0 1 0.1 0

4.6 0 0 1
4.0 0 0.9 0
0 1 2.2 0

.
Indeed,

βj {Xj(1−Mj) + cjMj} = βjXj(1−Mj) + {βjcj}Mj .

M. Le Morvan Learning with missing values 14 / 30



Finite sample bounds for linear predictors

The Bayes predictor and its linear approximation offer different bias-variance
tradeoffs.

Assumption

Y = fBayes(Z ) + noise(Z ) where noise(Z ) is a centred noise conditional on Z
and such that there exists σ2 > 0 satisfying V[Y |Z ] ≤ σ2 almost surely,
‖fBayes‖∞ < L,
Supp(X ) ⊂ [−1, 1]d .

This assumption is required for the next two results.
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Finite sample bounds for linear predictors
Under these assumptions:

Theorem
The risk of the OLS estimate clipped at L for the expanded model satisfies

2d c1
n + 1 ≤ R(TLfβ̂expanded

)− σ2 ≤ c max{σ2, L2}2d−1(d + 2)(1 + log n)
n

The risk of the OLS estimate clipped at L for the linear approximation
model satisfies

R(TLfβ̂approx
)− σ2 ≤ c max{σ2, L2}2d(1 + log n)

n + 64(d + 1)2L2

It follows that the risk of the expanded model is lower than that of the linear
approximation model if:

n ≥ 2d

d
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Why a Multilayer perceptron?
A Multilayer Perceptron with:

Rectified Linear Units activation functions for hidden units
(ReLU(x) = max(0, x)),
Identity activation for the output unit,

produces a prediction function that is piecewise affine.

Figure from Hanin et al. 2019
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Bayes consistency of the MLP

Theorem (MLP)

Assume that the Bayes predictor takes the form described earlier (expanded Bayes
Predictor). A MLP:

with one hidden layer containing 2d hidden units
ReLU activation functions
which is fed with the concatenated vector (X, M) where X is imputed by zero

is Bayes consistent.

Proof: We show that there exists a configuration of the parameters of the MLP so
that the resulting predictor is the Bayes predictor.
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Proof 1/3 - Learned imputations
x1

x2

m1

m2

y

Parameters hidden layer:
W (1) =

[
W (X),W (M)] ∈ R4×4

b(1) ∈ R4

Parameters output layer:
W (2) ∈ R4

b(2) ∈ R
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Proof 1/3 - Learned imputations
x1

x2

m1

m2

y

Parameters hidden layer:
W (1) =

[
W (X),W (M)] ∈ R4×4

b(1) ∈ R4

Parameters output layer:
W (2) ∈ R4

b(2) ∈ R

The activation of hidden unit k for input (x, m) is:

ak = W (X)
k,. x + W (M)

k,. m + b(1)
k

= W (X)
k,. x + W (X)

k,. � Gk,.m + b(1)
k

= W (X)
k,obs(m)xobs(m) + W (X)

k,mis(m)Gk,mis(m) + b(1)
k

where G (reparametrization of W (M)) can be seen as learned imputations.
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Proof 2/3 - one-to-one mapping mdp/hidden unit

The proof shows that the parameters of the MLP can be chosen so that:
1 all points with missing data pattern mk exclusively activate hidden unit k, and

hidden unit k is exclusively activated by points with missing data pattern mk .

y(x , mk) =
2d∑

h=1

W (2)
h ReLU(ah) + b(2)

=
2d∑

h=1

W (2)
h ReLU(W (X)

h,obs(mk )xobs(mk ) + W (X)
h,mis(mk )Gh,mis(mk ) + b(1)

h ) + b(2)

= W (2)
k

(
W (X)

k,obs(mk )xobs(mk ) + W (X)
k,mis(mk )Gk,mis(mk ) + b(1)

k

)
+ b(2)

i.e, the MLP produces a predictor y(x , mk) that is linear per pattern.

2 The slopes and biases of y(x ,mk) equal those of the Bayes predictor.
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Proof 3/3 - vizualisation of a bayes consistent MLP
We simulated data (X ,M) in 2 dimensions, and based on our proof, built a MLP
(with 4 hidden units) that is Bayes consistent.
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ReLU(a_0) ReLU(a_1)

50 0 50 100

50
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y(x ,m) = W (2)
1,. ReLU(a0) + W (2)

1,. ReLU(a1) + W (2)
2,. ReLU(a2) + W (2)

3,. ReLU(a3) + b(2)
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Example of an optimized MLP in two dimensions.
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ReLU(a_0) ReLU(a_1)
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ReLU(a_3)

y(x ,m) = W (2)
1,. ReLU(a0) + W (2)

1,. ReLU(a1) + W (2)
2,. ReLU(a2) + W (2)

3,. ReLU(a3) + b(2)
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Trading off estimation and approximation error

Number of parameters of:
a MLP with one hidden layer and 2d units:

(d + 1)2d+1 + 1

the expanded linear model:
(d + 1)2d−1

The MLP is slightly overparametrized, and the number of parameters is
exponential in d .

However, contrary the the expanded linear model, the MLP provides a natural way
to reduce the model capacity by reducing the number of hidden units.
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Simulation models
The data (X, M) is generated according to 3 simulation models:

mixture 1:
I P(X) = N (µ,Σ)
I P(M) = 1

2d
I Gaussian pattern mixture model with 1 component
I Corresponds to a Missing Completely At Random (MCAR) problem

mixture 3:
I P(X |M = m) = N (µm,Σm), with 3 distinct Gaussian components.
I P(M) = 1

2d
I Gaussian pattern mixture model (with 3 components)

selfmasking:
I P(X) = N (µ,Σ)
I P(M = 1|Xj ) = Probit (λj (Xj − µ0))
I Not an instance of pattern mixture model! (Theory does not hold)
I Corresponds to a typical Missing Non At Random (MNAR) problem
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Estimation Approaches

EMLR: EM is used to fit a multivariate normal distribution for the
(p + 1)-dimensional random variable (X1, ...,Xp,Y ).

ConstantImputedLR: Optimal imputation method.

MICE: Conditional imputation with an iterative imputer (similar to the well
known MICE) followed by linear regression.

ExpandedLR: Expanded linear model.

MLP: Multilayer perceptron with one hidden layer whose size is varied
between and 1 and 2d hidden units.
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Learning curves: Gaussian mixtures

Mixture 1 (MCAR)
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Learning curves: self-masking
Self-masked (MNAR)
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Conclusion

Conclusion:
The Bayes-optimal predictor is no longer a linear function of the data.
It is explicit under Gaussian assumptions, but high-dimensional.
Possible approximations include constant imputation and MLP, which can be
consistent.
The MLP adapts naturally to the complexity of the data.
Our risk-minimisation strategy is robust to the missing-value mechanism.
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