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Causal inference questions

Assume a policy/intervention/treatment W causes an outcome Y

Aim: estimate the effect as acurately as possible (bias & variance)

Medical collaborations:

. Traumabase: polytraumatized patients (car accident, fall, weapon).

Suffer from hemorrhagic shock, head trauma

⇒ Effect of tranexamic acid on mortality for brain trauma

. Gustave Roussy: define personalized optimal duration of adjuvant

endocrine therapy in patients with early breast cancer

Causal inference questions in many fields:

. Is there an effect of financial incentives on teacher performance

(measured by teacher absences & class test scores)? (Duflo et al. 2012)

. What is the impact of the advertising campaign?
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Potential Outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect for a binary treatment

. n i.i.d. obs ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Wi , Yi (1),Yi (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

. Individual causal effect of the treatment: ∆i = Yi (1)− Yi (0)

Missing problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Cov. Treat. Out.

X1 X2 X3 W Y

1.1 20 F 1 200

-6 45 F 0 10

0 15 M 1 150

. . . . . . . . .

-2 52 M 0 100

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment
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Randomized Controlled Trial (A/B testing)

Identifiability assumptions

. Yi = WiYi (1) + (1−Wi )Yi (0) (consistency)

. Wi ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We can check that τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Wi = 1]− E[Yi (0)|Wi = 0]

= E[Yi |Wi = 1]− E[Yi |Wi = 0]

⇒ Although ∆i never observe, τ is identifiable and can be estimated

Difference-in-means estimator

τ̂DM =
1

n1

∑
Wi=1

Yi −
1

n0

∑
Wi=0

Yi

τ̂DM unbiased and
√
n-consistent

√
n (τ̂DM − τ)

d−−−→
n→∞

N (0,VDM)
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Covariates Treatment Outcome

X1 X2 X3 W Y

1.1 20 F 1 200
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. . . . . . . . .
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τ̂DM = 1
n1

∑
Wi=1 Yi − 1
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Data to estimate the treatment effect

Randomized Controlled Trial (RCT)

. gold standard (allocation )

. same covariate distributions of

treated and control groups

⇒ High internal validity

. expensive, long, ethical limitations

. small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

. trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

. “big data”: low quality

. lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

. low cost

. large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

. representative of the target

populations

⇒ High external validity
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Confounding biais in observational data: covid ex.

survived deceased Proportion(survived | treatment) Pr(deceased | treatment)

HCQ 497 (11.4%) 111 (2.6%) 0.817 0.183

HCQ+AZI 158 (3.6%) 54 (1.2%) 0.745 0.255

none 2699 (62.1%) 830 (19.1%) 0.765 0.235

Mortality rate 22.9% - for HCQ 18.3% - non treated 23.5%: treatment helps?

25 50 75 100

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

Age

Mean
Median

Treatment arm

HCQ
Nothing

Comparison of the distribution of Age between HCQ and non treated.

Younger patients (with lower risk of death) are more likely to be treated.

If control group does not look like treatment group, difference in response may

be confounded by differences between the groups.
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Leverage both RCT and observational data

RCT

− Narrowly defined population

+ High internal validity

Observational data

− Confounding

+ High external validity

We could use both to 1 . . .

. . . . validate observational methods

. . . . correct confounding bias

. . . . improve estimation of heterogeneous treatment effects

. . . . generalize the Average Treatment Effect to a (broader)

target population (data fusion, transportability, data integration)2

The FDA has greenlighted the usage of the drug palbociclib to men with

breast cancer, though clinical trials were performed only on women

→ Reduce drug approval times and costs for patients who could benefit

1 Colnet, J.J. et al. (2021). Causal inference methods for combining RCT and observational

studies: a review. In review in Statistical Science.
2Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
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Generalization task

Set S X1 X2 X3 W Y (0) Y(1)

1 R 1 1.1 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3 ?

n R 1 0 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA

n + 2 O ?(1) -1 35 2.4 NA NA NA

. . . O ?(0) . . . NA NA NA

n + m O ?(1) -2 22 3.4 NA NA NA

Set S X1 X2 X3 W Y

1 R 1 1.1 20 5.4 1 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O NA -2 52 7.1 NA NA

n + 2 O NA -1 35 2.4 NA NA

. . . O NA . . . NA NA

n + m O NA -2 22 3.4 NA NA

Data with observed treatment W and outcome Y only in the RCT.

. S indicator of eligibility for the trial (not observed in the observational data

Set O but only in Set R)

. Covariates distribution not the same in the RCT & target pop:

fX |S=1 6= fX

⇒ τ1 = E[Y (1)− Y (0)|S = 1]︸ ︷︷ ︸
ATE in the RCT

6= E[Y (1)− Y (0)] = τ︸ ︷︷ ︸
Target ATE

W=0 control 9



Assumption for ATE identifiability

Ignorability assumption on trial participation

{Y (0),Y (1)} ⊥⊥ S | X

Trial eligibility S is random conditionally on covariates X

Sampling score - overlap assumption

πS(x) = P(Si = 1 | Xi = x) ∀ x ∈ X

Assume overlap, i.e. πS(x) ≥ c > 0, ∀ x ∈ X and some constant c

ATE not identifiable without assumption: it is not a sample size problem!
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Identification formulae: Regression formula (g-formula)

Set S X1 X2 X3 W Y (0) Y(1)

1 R 1 1.1 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3 ?

n R 1 0 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA

n + 2 O ?(1) -1 35 2.4 NA NA NA

. . . O ?(0) . . . NA NA NA

n + m O ?(1) -2 22 3.4 NA NA NA

Set S X1 X2 X3 W Y

1 R 1 1.1 20 5.4 1 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O NA -2 52 7.1 NA NA

n + 2 O NA -1 35 2.4 NA NA

. . . O NA . . . NA NA

n + m O NA -2 22 3.4 NA NA

Data with observed treatment W and outcome Y only in the RCT.

Average Treatment Effect: τ = E[Yi (1)− Yi (0)]

E [Y (w)] = E [E[Y (w) | X ]] Law of total expectation

= E [E[Y (w) | X ,S = 1]] Ignorability {Y (0),Y (1)} ⊥⊥ S | X
= E [E[Y (w) | X ,S = 1,W = w ]] Random treatment

= E [E[Y | X ,S = 1,W = w ]]ConsistencyY = Y (1)W + (1−W )Y (0)

⇒ Transportability assumption: τ(x) = τ1(x)

E [Y (1)− Y (0) | X = x ] = E [Y (1)− Y (0) | X = x ,S = 1]
11



g-estimator: difference between conditional mean

g-estimator

τ̂g ,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

µw ,1(x) = E [Y | X = x ,S = 1,W = w ]

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 9.4 1 24.1

R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• Fit two models of the outcome (Y ) on covariates (X )

among trial participants (S = 1) for treated and for control to get µ̂1,n & µ̂0,n

• Apply these models to the covariates in the target pop , i.e., marginalize

over the covariate distribution of the target pop, gives the expected outcomes

• Compute the differences between the expected outcomes on the target

population µ̂1,n(·) - µ̂0,n(·)
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g-estimator: intuition

1) Covariate shift - 2) Estimation in RCT - 3) Extrapolation in Obs data

0.00

0.02

0.04

0.06

0.08

10 20 30 40
Age

de
ns

ity

RCT Target

100

110
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130

20 30 40 50

Age

Y

Control Treated

100

110

120

130

20 30 40 50

Age

Y

Control Treated

. 1) age distribution is different in the RCT (green) and in the target pop

(pink), younger in the RCT

. 2) model outcome on age in the RCT for treated (red) and control (blue)

. 3) extrapolate the RCT model in the Obs data for older people

13



Inverse probability of sampling weighting (IPSW)

Y outcome, X covariates, W binary treatment, S eligibility in trial, e1(x)

propensity score P(W = 1 | X = x , S = 1)(= 0.5), set R: RCT (size n); O
Obs data (size m).

IPSW estimator

τ̂IPSW ,n,m =
1

m

n∑
i=1

Yi

α̂n,m(Xi )

(
Wi

e1(Xi )
− 1−Wi

1− e1(Xi )

)
with,

α(x) =
P(i ∈ R | ∃i ∈ R ∪O,Xi = x)

P(i ∈ O | ∃i ∈ R ∪O,Xi = x)
=

n

m
×

fX |S=1(x)

fX (x)
=

P(S = 1)

P(S = 1 | Xi = x)

• weighted difference of average Y between treated & control in trial

• weights: inverse of odd ratio of the indicatrix of being in RCT (account

for the shift of the covariate distribution from RCT to target pop.)

Ex: if proba to be in trial when old is small, then up-weight old in trial

⇒ Balance the differences between the two groups RCT and Obs data
14



IPSW: intuition

105

110

115

120

125

10 15 20 25 30 35

Age

Y

Control Treated

Figure 1: Representation of the outcome with respect to age in the trial sample

for treated (red) and control (blue). Size of the dot corresponds to the weight.

⇒ Reweights the RCT sample so that it looks like the target population

distribution: Older persons are upweighted because the target population is

older than the RCT one.
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Estimators of the average treatment effect for generalization

g-estimator: model conditional outcomes & extrapolate to target

Model Outcome on Covariates µ(w,1)(w) = E[Yi (w) |Xi = x , Si = 1]

Assumption: consistency of surface responses’ estimation

. (H1-g) For w ∈ {0, 1}, E[µ̂w,n(X ) | Dn]
a.s.−→ E[µw (X )] when n→∞,

. (H2-g) For w ∈ {0, 1}, there exist C1,N1 so that for all n > N1, almost

surely, E[µ̂2
w,n(X ) | Dn] 6 C1. Dn the RCT sample.

Theorem: g-estimator consistency |τ̂g,n,m − τ |
a.s.−→ 0 , when n,m→∞

IPSW: weight RCT sample so that it ressembles the target pop

Model Set on Covariates P(i ∈ R | ∃i ∈ R∪O,Xi = x), estimate odd ratio α

Assumption: consistency of weights’ estimation

. (H1-IPSW) supx∈X | n
mα̂n,m(x)

− fX (x)
fX|S=1(x)

| = εn,m
a.s.−→ 0 , when n,m→∞

. (H2-IPSW) Y is square-integrable

Theorem: IPSW consistency |τ̂IPSW ,n,m − τ |
a.s.−→ 0 , when n,m→∞ 16



Doubly robust estimator: combine the previous ideas

Augmented IPSW

τ̂AIPSW ,n,m =
1

n

n∑
i=1

n

m α̂n,m(Xi )

[
Wi (Yi − µ̂1,n(Xi ))

e1(Xi )
− (1−Wi ) (Yi − µ̂0,n(Xi ))

1− e1(Xi )

]

+
1

m

m+n∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) .

is consistent if µ̂w ,1(X ) (w = 0, 1) or α̂n,m(X ) are consistent.

Possibility to use any (machine learning) procedure such as random

forests, deep nets, etc. to estimate α̂n,m(X ) and µ̂(w ,1)(x) without

harming the interpretability of the causal effect estimation.

Property (to be proved)

If E[(µ̂w ,n(X )− µw (X ))2]E[(αn,m(X ))− α(X ))2] = o
(

1
n

)
, then

√
n (τ̂AIPSW ,n,m − τ)

d−−−−−→
n,m→∞

N (0,V ∗), V ∗ semiparametric efficient

variance 3.
3Chernozukov, Duflot, et al (2018), Double/debiased machine learning for treatment and

structural parameters. Econometrics journal
17



Sensitivity analysis



What if a covariate is missing?

In practice the common subset of covariates is used

. Xmis totally missing or partially missing covariate

. Xobs covariates observed in both data sets

. X = Xmis ∪ Xobs

⇒ Breaks the identifiability assumption {Y (1),Y (0)} 6⊥⊥ S | Xobs

Is there a way to assess how dramatic the situation is?

Solutions: sensitivity analysis (Rosenbaum & Rubin (1983), Imbens

(2003) 4, Franks et. al. (2019), Veitch & Zaveri (2020), etc.)

4Sensitivity to Exogeneity Assumptions in Program Evaluation, The American Economic Review 18



Unobserved confounders: major issue with observational data

Unconfoundness identifiability assumption

{Yi (0),Yi (1)} ⊥⊥Wi |Xi

⇒ Measure all possible confounders X (drives treatment W & outcome

(Y ); ex. age in covid data)

. Unobserved confounders: impossible to separate correlation & causality

. Assumption not testable from the data

19



Smoking and lung cancer - Cornfield, 1956

. If people have gene B: their disease rate is r1. If not, disease rate is r2

(we suppose a lower prevalence).

. Instead of B, we observe A, smoking status. Suppose that, p(B | A) = p1 and

p(B | Ā) = p2, and the presence of B is correlated with A, so p1 > p2.

. In practice, when observing A, we observe an apparent rate of disease denoted RA:

p1r1 + (1− p1) r2 = RA.

. Because RA > RĀ, and doing a bit of computation gives . . .

p1

p2
=

RA

RĀ

+
r2

p2r1

(
RA

RĀ

(1− p2)− (1− p1)

)
.

. Because p1 > p2 and RA > RĀ, the third term is positive, therefore, RA
RĀ

< p1
p2
.

If cigarette smokers have 9 times the risk of nonsmokers for developing
lung cancer (i.e. RA

RĀ
= 9), and this is not because cigarette smoke is a

causal agent, but only because cigarette smokers produce hormone X,
then the proportion of hormone-X producers among cigarette smokers
must be at least 9 times greater than nonsmokers (i.e. p1

p2
> 9).

20



Semi-parametric model

Assumption on the generative model

Consider that the potential outcomes are generated according to:

Y (W ) = µ(W ,X ) + εW ,

for any function µ ∈ L2({0, 1}×X → R) and such that E [εW | X ] = 0.

With binary treatment W , there exists a function g : X → R such that

Y (W ) = g(X ) + W τ(X ) + εW , where τ(X ) = E[Y (1)− Y (0) | X ]

Linear Conditional Average Treatment Effect (CATE)

We suppose there exist δ ∈ Rd , and σ ∈ R+ such that:

Y = g(X ) + W 〈X , δ〉+ ε, where ε ∼ N
(
0, σ2

)

21
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Asymptotic bias when considering the common set of variables

Assumption on covariates

X ∼ N (µ,Σ)

X | S = 1 ∼ N (µRCT ,Σ) (transportability of Σ)

X = Xmis ∪ Xobs

Theorem

Assume partially linear model & assumption on covariates. Let B be:

B =
∑
j∈mis

δj︸︷︷︸
Xmis ’s strength

E[Xj ]− E[Xj | S = 1]︸ ︷︷ ︸
Shift of Xmis

−Σj,obsΣ−1
obs,obs(E[Xobs ]− E[Xobs | S = 1])

 ,

with Σobs,obs submatrix of Σ of observed index of rows and columns.

. Granting consistency of the surface response, τ − lim
n,m→∞

E[τ̂g,n,m,obs ] = B

. Granting consistency of IPSW, τ − lim
n,m→∞

E[τ̂IPSW ,n,m,obs ] = B

Large distributional shift & treatment modifying strength → large bias
22



Sensitivity analysis for a completely missing covariate

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 NA

n + 2 O ? -2 52 NA

O ? . . .

n + m O ? -2 22 NA

B = δmis︸︷︷︸
Xmis ’s strength

(E[Xmis ]− E[Xmis | S = 1]︸ ︷︷ ︸
Shift of Xmis : ∆m

−Σmis,obsΣ−1
obs,obs(E[Xobs ]− E[Xobs | S = 1])︸ ︷︷ ︸

Can not be estimated from the data

)

Bias under an additional independence assumption

Xmis ⊥⊥ Xobs and Xobs ⊥⊥ Xmis | S = 1

Asymptotic bias: τ − lim
n,m→∞

E[τ̂G ,n,m,obs ] = δmis ∆m

. Define range for plausible δmis values

. Define range for plausible ∆m values

. Compute all possible bias δmis∆m and return Austen plot

Imbens (2003) for observational data: 2 sensitivity parameters (strength on W & Y , linear models)
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Austen plot for a completely missing covariate

What would be the bias of τ̂n,m,obs when we totally missed X3?

Sensitivity analysis: translates sensitivity parameter(s) (treatment effect

modifier’s strength δmiss & covariate shift’s strength ∆m) into range bias

Austen plot: shows how strong an unobserved key covariate would need

to be to induce a bias that would force to reconsider the conclusions

(bias above a certain threshold, τ̂n,m,obs − τ̂1 =∼ 6 in blue)
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Figure 2: Austen plots: Heatmap showing the landscape and sign of the bias.
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Sensitivity analysis when missing in the RCT

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

B = δmis︸︷︷︸
Xmis ’s strength

(E[Xmis ]− E[Xmis | S = 1]︸ ︷︷ ︸
Shift of Xmis : ∆m

−Σmis,obsΣ−1
obs,obs(E[Xobs ]− E[Xobs | S = 1])︸ ︷︷ ︸
Can be estimated from the data

)

No additional assumption on independence

. Define range for plausible δmis and ∆m values

. Estimate Σobs,obs , Σmis,obs , and E[Xobs ] on the observational dataset

. Estimate E[Xobs | S = 1] on the RCT dataset

. Compute all possible bias B for range of δmis & ∆m and return austeen plot

Hints for δmiss : impute the missing variable and estimate δmiss
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Sensitivity analysis when missing in the observational data7

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 34 1 24.1

R 1 -6 45 12 0 26.3

n R 1 0 15 10 1 23.5

n + 1 O ? -1 35 NA

n + 2 O ? -2 52 NA

O ? . . .

n + m O ? -2 22 NA

τ = E[Y (1)]− E[Y (0)]

= E[g(X ) + W 〈X , δ〉 |W = 1]− E[g(X ) + W 〈X , δ〉 |W = 0]

= 〈δ,E[X ]〉 = 〈δobs ,E [Xobs ]〉 + 〈δmis , E [Xmis ]︸ ︷︷ ︸
Unknown

〉

No assumption

. Define range for plausible E[Xmis ] values

. Estimate δ with Robinson procedure (residuals on residuals) on the RCT 5 6

. Estimate E[Xobs ] on the observational dataset

. Compute all possible bias for range of E[Xmis ] and return austen plot

5Robinson, P. 1988, Root- N-Consistent Semiparametric Regression, Econometrica
6Nie, X & Wager, S. 2020, Quasi-Oracle Estimation of Heterogeneous Treatment, Biometrika
7 Nguyen, et al. (2018), Sensitivity analyses for effect modifiers not observed in the target

population when generalizing treatment effects from a randomized controlled trial, PLOS ONE
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Student/teacher achievement ratio (STAR) data

• RCT with 5000 students: effect of class size on grades

• Difference-in-means estimator (taken as true): τ = +12.80 points on grades

Semi-synthetic simulation

• generate biased RCT based on g1surban (n = 560) τ̂1 = 4.85

• generate a representative sample observational data (m = 500)

• generalize from RCT to obs. data with g-estimator & linear/random forests

τ̂g,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

with µw,1(x) = E [Y | X = x , S = 1,W = w ]

●

●

●

●

STAR RCT

Biaised RCT

Generalized ATE 
 (all covariates)

Generalized ATE 
 (without g1surban)

0 5 10 15 20
Estimated ATE
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Sensitivity analysis on STAR

• Suppose g1surban observed in obs. data but not in RCT

• Ommiting this variable: bias (≈ 7) when generalizing the treatment effect

. ∆m given by domain expert (interpretable: shift in children proportion

leaving in suburbs versus city center)

. For δmis we impute the RCT, and model the outcome as a function of

observed and imputed covariates
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Blue line: true biais. Cross: with 2 plausible values for the sensitivity

parameters (≈ 6).
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Motivating example

Question from physicians

Can we estimate the average effect of Tranexamic Acid (TXA) on

brain-injured death on the French population in trauma centers?

CRASH3

. Multi-centric RCT over 29

countries

. No effect of TXA with difference in

means (-0.3 with [95% CI -0.8 0.2])

Traumabase

. Representative sample

. 8200 patients with TBI
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Motivating example

Question from physicians

Can we estimate the average effect of Tranexamic Acid (TXA) on

brain-injured death on the French population in trauma centers?

CRASH3

. Multi-centric RCT over 29

countries

. No effect of TXA with difference in

means (-0.3 with [95% CI -0.8 0.2])

Traumabase

. Representative sample

. 8200 patients with TBI

ATE = -0.035, 95% CI [-0.38 0.28] when generalizing with g-estimator.

Treatment effect modifiers ”time to treatment” is missing in Traumabase
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Conclusion



Conclusion

Contributions

• Consistency of generalization estimators

• Sensitivity analysis for generalization task: range of bias due to

(partially) missing covariates

• Semi-parametric model, no model on the sampling selection (S)

• Bias when imputing missing covariates & using a proxy

Ongoing work

. Application on many RCTs and obs data

. {Y (0),Y (1)} ⊥⊥ S | X : covariates treatment effect modifier & shifted

• Variance of the estimators when additional variables related to Y ?

• Rate of convergence?

Limits: Difficult to give a priori values for sensitivity parameters,

Semi-parametric model (linear CATE), shift on means,

Austen plot for one missing variable
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(Partially) missing covariates & sporadically missing covariates

RCT 1
X1 X2 X3 X4 X5 W Y

RCT 2
X1 X2 X3 X4 X5 X6 W Ÿ

OBSERVATIONAL DATA A
X1 X2 X3 X4 X5 X6 X7 X8 W Y

Ho
sp

ita
l 1

Ho
sp

ita
l 2

Ho
sp

ita
l 3

OBSERVATIONAL DATA B
X1 X2 X3 X4 X5 X6 X7 X8 OBSERVATIONAL DATA C

X1 X2 X3 X4 X5 X6 X7 X8 AUXILIARY DATA
S1 S2 S3 S4

TARGET 
POPULATION

TREATMENT
ESTIMATE(S)

NEW PATIENTS TO TREAT
X1 X2 X3 X4 X5 X6 X7 X8 W
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