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Setting and goal

Regression with missing values: impute-then-regress
Data:

(
X (k),M (k), Y (k))n

k=1 ∈
(
Rd × {0, 1}d ×R

)n
Y X1 X2 X3

10 -1 -10 6
4 4 -2 NA
8 NA NA 2

Mask M =
(M1 M2 M3)
0 0 0
0 0 1
1 1 0

=⇒ 2d potential masks.

A possible missing mechanism: Missing Completely At Random (MCAR)
for all m ∈ {0, 1}d, P(M = m|X) = P(M = m), i.e. M ⊥⊥ X .

Popular strategy: imputation. φ denotes an imputation function (e.g.
replaces NA by a constant, the empirical mean, etc).
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Lemma: exchangeability after imputation

Let
(
X (k),M (k), Y (k))n

k=1 be exchangeable. For any missing mechanism, for
almost all φ:

(
φ
(
X (k),M (k)) ,M (k), Y (k))n

k=1 are exchangeable.

Predictive uncertainty quantification with NA
Goal: predict Y (n+1) with confidence 1−α, i.e. build the smallest Cα, s.t.:

1. Marginal Validity (MV)

P
{
Y (n+1) ∈ Cα

(
X (n+1),M (n+1)

)}
≥ 1− α.

2. Mask-Conditional-Validity (MCV)

∀m ∈ {0, 1}d : P
{
Y (n+1) ∈ Cα

(
X (n+1),m

)
|M (n+1) = m

}
≥ 1− α.

Conformalized Quantile Regression [CQR, 1]
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Train Cal Test
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Randomly split the data to obtain a
proper training set and a calibration set.
Keep the test set.

Step 1
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ILearn (or get) Q̂Rlow
and Q̂Rup.

Step 2
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IPredict with Q̂Rlow
and Q̂Rup.
IGet the set of scores
S =

{
S(k)}

Cal∪{+∞},
and its empirical 1− α
quantile: q1−α (S).

Step 3
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IPredict with Q̂Rlow
and Q̂Rup.
IBuild Ĉα(x):
[Q̂Rlow(x)− q1−α (S);
Q̂Rup(x) + q1−α (S)]

If
(
X (k), Y (k))n+1

k=1 are exchangeable (or i.i.d.), CQR intervals achieve
Marginal Validity, i.e. P

{
Y (n+1) ∈ Ĉα

(
X (n+1))} ≥ 1− α.

Impute-then-CQR

Proposition (informal)
Impute-then-CQR is Marginally Valid (MV).

Illustrative data: Gaussian linear model, X2 has more predictive power.

Conclusion: missing values induce heteroskedasticity.

Insights from the Gaussian linear model

•Y = βTX + ε, with ε ∼ N (0, σ2
ε) ⊥⊥ X , and β ∈ Rd.

•X conditional on M is Gaussian: for all m ∈ {0, 1}d, there exist µm and
Σm such that X|(M = m) ∼ N (µm,Σm).

Proposition: oracle intervals
Under the Gaussian linear model, for any m ∈ {0, 1}d, the oracle length is:

L∗α(m) = 2× qN (0,1)
1−α/2 ×

√
βmis(m)Σmis(m)|obs(m)β

T
mis(m) + σ2

ε.

The oracle intervals depend on the mask in a non-linear fashion.

Missing Data Augmentation (MDA)

? Idea: generate additional missing values in the calibration set.
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Theorem (informal): CQR-MDA is MCV

If M ⊥⊥ (X, Y ) and the data is exchangeable, for almost all imputation
function, CQR-MDA is Mask-Conditionally-Valid (MCV).

TraumaBase®: critical care medicine

•Predict the levels of blood platelets upon arrival at the hospital;
• 7 explanatory variables selected by medical doctors;
•Missing values vary from 0% to 24% by features, with a total average of 7%.
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1•MDA recovers mask-validity on CQR’s under-covered masks (�).
•MDA improves efficiency on over-covered masks.

Asymptotic regime

Define g∗δ,φ ∈ argmin
g:Rd→R

E [ρδ (Y − g ◦ φ(X,M))], where ρδ is the pinball loss

associated to the quantile of level δ.

Proposition: Bayes-consistency of impute-then-QR
For almost all imputation functions φ ∈ C∞, g∗δ,φ ◦ φ is Bayes optimal for
the pinball-risk of level δ.

This result is an extension of [2].

A universally consistent learner trained on deterministically imputed data
set will be Bayes optimal.
⇒ it will reach individualized conditional coverage.

Open directions
1 Going beyond the MCAR assumption?
2 Impact of the imputation on QR with finite sample.
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