Conformal Prediction with Missing Values

Margaux Zaffran^[1,2,3] Aymeric Dieuleveut^[3]

^[1]Electricité De France, Paris, France ^[2]INRIA, Montpellier, France ^[3]Ecole Polytechnique, Paris, France ^[4]Technion - Israel Institute of Technology, Haifa, Israel

Julie Josse^[2]

Setting and goal

Regression with missing values: impute-then-regress Data: $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n \in (\mathbb{R}^d \times \{0, 1\}^d \times \mathbb{R})^n$

		$\mathbf{Mask}\ M =$
Y	$ig X_1 \ X_2 \ X_3$	$(M_1 \ M_2 \ M_3)$
10	-1 -10 6	0 0 0
4	4 -2 NA	0 0 1
8	NA NA 2	1 1 0
	•	

 $\implies 2^d$ potential masks.

A possible missing mechanism: Missing Completely At Random (MCAR)

for all $m \in \{0, 1\}^d$, $\mathbb{P}(M = m | X) = \mathbb{P}(M = m)$, i.e. $M \perp X$.

Popular strategy: imputation. ϕ denotes an **imputation function** (e.g. replaces NA by a constant, the empirical mean, etc).

$x^{(1)}$	-1	-10	6		-1	-10	6
$x^{(2)}$	4	-2	NA	ϕ	4	-2	4
$x^{(3)}$	NA	NA	2		1.5	-6	2

Lemma: exchangeability after imputation

Let $(X^{(k)}, M^{(k)}, Y^{(k)})_{k=1}^n$ be exchangeable. For any missing mechanism, for almost all ϕ : $\left(\phi\left(X^{(k)}, M^{(k)}\right), M^{(k)}, Y^{(k)}\right)_{k=1}^{n}$ are **exchangeable**.

Predictive uncertainty quantification with NA **Cool.** product $V^{(n+1)}$ with confidence $1 - \alpha$ is build the smallest C st.

JUal	predict <i>r</i>	WIUII (comfuence	$1 - \alpha$, i.e.	buna tu	le smanest	C_{α} , S.U
1. N	Iarginal	Validity	(MV)				

0			
$\mathbb{P}\left\{Y^{(n+1)}\right.$	$\in \mathcal{C}_{\alpha}\left(X^{(n+1)}\right)$	$), M^{(n+1)} \Big\}$	$\geq 1 - \alpha$

2. Mask-Conditional-Validity (MCV)

$$\forall m \in \{0,1\}^d : \mathbb{P}\left\{Y^{(n+1)} \in \mathcal{C}_{\alpha}\left(X^{(n+1)}, m\right) | M^{(n+1)} = m\right\} \ge 1 - \alpha.$$

Yaniv Romano^[4]

Conformalized Quantile Regression [CQR, 1]

If $(X^{(k)}, Y^{(k)})_{k=1}^{n+1}$ are **exchangeable (or i.i.d.)**, CQR intervals achieve Marginal Validity, i.e. $\mathbb{P}\left\{Y^{(n+1)} \in \widehat{C}_{\alpha}\left(X^{(n+1)}\right)\right\} \geq 1 - \alpha.$

Impute-then-CQR

Conclusion: missing values induce heteroskedasticity.

Insights from the Gaussian linear model

- $Y = \beta^T X + \varepsilon$, with $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \perp X$, and $\beta \in \mathbb{R}^d$.
- X conditional on M is Gaussian: for all $m \in \{0,1\}^d$, there exist μ_m and Σ_m such that $X|(M=m) \sim \mathcal{N}(\mu_m, \Sigma_m)$.

Proposition: oracle intervals

Under the Gaussian linear model, for any $m \in \{0,1\}^d$, the oracle length is: $\mathcal{L}^*_{\alpha}(m) = 2 \times q_{1-\alpha/2}^{\mathcal{N}(0,1)} \times \sqrt{\beta_{\min(m)} \Sigma_{\min(m)|obs(m)} \beta_{\min(m)}^T} + \sigma_{\varepsilon}^2.$

The oracle intervals depend on the mask in a non-linear fashion.

Missing Data Augmentation (MDA)

\star <u>Idea:</u> generate **additional missing values** in the ca alibration set.

MDA-Exact

	calib	ratio	n set	
$ ilde{x}^{(1)}$	0	-8	NA	
$ ilde{x}^{(2)}$	5	-3	NA	
$ ilde{x}^{(3)}$				An discarde
	*****			•

MDA-Nested

	calib	ratio	tem test	ipora t poi	ry nts		
(1)	0	-8	NA		3	2	N
(2)	5	-3	NA	and	3	2	N
(3)	NA	1	NA		NA	2	N

Theorem (informal): CQR-MDA is MCV

If $M \perp (X, Y)$ and the data is exchangeable, for almost all imputation function, CQR-MDA is Mask-Conditionally-Valid (MCV).

TraumaBase®: critical care medicine

- Predict the levels of blood platelets upon arrival at the hospital;
- 7 explanatory variables selected by medical doctors;
- Missing values vary from 0% to 24% by features, with a total average of 7%.

• MDA recovers mask-validity on CQR's under-covered masks (\blacksquare) . • MDA **improves efficiency** on over-covered masks.

Asymptotic regime

Define $g^*_{\delta,\phi} \in \operatorname{argmin} \mathbb{E} \left[\rho_{\delta} \left(Y - g \circ \phi(X, M) \right) \right]$, where ρ_{δ} is the **pinball loss** $q: \mathbb{R}^d \to \mathbb{R}$ associated to the quantile of level δ .

Proposition: Bayes-consistency of impute-then-QR

For almost all imputation functions $\phi \in \mathcal{C}^{\infty}$, $g^*_{\delta \phi} \circ \phi$ is Bayes optimal for the pinball-risk of level δ .

This result is an extension of [2].

A universally consistent learner trained on deterministically imputed data set will be Bayes optimal.

 \Rightarrow it will reach individualized conditional coverage.

Open directions

• Going beyond the MCAR assumption? 2 Impact of the imputation on QR with finite sample.

Main references

- [1] Yaniv Romano, Evan Patterson, and Emmanuel Candès. Conformalized Quantile Regression. NeurIPS, 2019.
- [2] Marine Le Morvan, Julie Josse, Erwan Scornet, and Gael Varoquaux. What's a good imputation to predict with missing values? NeurIPS, 2021.