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Introduction



Collaborators on supervised learning with missing values

e M. Le Morvan, Postdoc at INRIA, Paris.

e E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris.
Topic: random forests.

e G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikitlearn in python.

= Random Forests with missing values
1. Consistency of supervised learning with missing values. (2019). Revis JMLR.

= Linear regression with missing values - MultiLayer perceptron
2. Linear predictor on linearly-generated data with missing values: non
consistency and solutions. AISTAT2020.

3. Neumann networks: differential programming for supervised learning with
missing values. Submitted Neurips2020. 2



Traumabase project: decision support for trauma patients.

20000 trauma patients
250 continuous and categorical variables: heterogeneous

11 hospitals: multilevel data
e 4000 new patients/ year

Center  Accident Age Sex Lactactes BP Shock Platelet
Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NR yes 318000
Pitie moto 30 w Imp 107 no 211000
HEGP knife 16 m 25 118 no 184000



Traumabase project: decision support for trauma patients.

20000 trauma patients
250 continuous and categorical variables: heterogeneous

11 hospitals: multilevel data
e 4000 new patients/ year

Center  Accident Age Sex Lactactes BP Shock Platelet
Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NR yes 318000
Pitie moto 30 w Imp 107 no 211000
HEGP knife 16 m 25 118 no 184000

= Estimate causal effect: Administration of the treatment

"tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients. *

1Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. 3
Annals Of Applied Statistics 2020.



Traumabase project: decision support for trauma patients.

20000 trauma patients
250 continuous and categorical variables: heterogeneous

11 hospitals: multilevel data
e 4000 new patients/ year

Center  Accident Age Sex Lactactes BP Shock Platelet
Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NR yes 318000
Pitie moto 30 w Imp 107 no 211000
HEGP knife 16 m 25 118 no 184000

= Predict platelet levels given pre-hospital features

Ex linear regression/ random forests with covariates with missing values
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Random Forests with missing
values



ing values in a predictive framework (not inferential)

e Aim: target an outcome Y (not estimate parameters and their variance)
e Specificities: train & test sets with missing values
e Methods ®: (in practice) imputation prior to prediction

e Separate: impute train and test separately (with a different model)
e Grouped/ semi-supervised: impute train and test simultaneously but

the predictive model is learned only on the training imputed data set.

e Imputation train and test sets with the same model
Issue: methods (missForest) are "black-boxes” i.e. take as an
input the incomplete data and output the completed data

Easy for univariate imputation: mean of each colum of the train.

IRmistatic platform to organize ressources - Task view: more than 150 packages


https://rmisstastic.netlify.app/

imputation is bad for estimation

Individuals factor map (PCA)

) Variables factor map (PCA) PCA with mean

o \ imputation

N

T orassim,

library(FactoMineR)
PCA(ecolo)

wnda

Dim 2 (23.50%)
Dim 2 (23.50%)

/ Warning message: Missing
Rimas

[
+ . B s ] are imputed by the mean
° | o / of the variable:

You should use imputePCA

T T 0 05 00 05 10
- o s .
Dim 1 (44.79%) from missMDA
Dim 1 (44.79%)
Individuals factor map (PCA)
Variables factor map (PCA) E M P CA

o library(missMDA)
, ¥ 7 _— imp <- imputePCA(ecolo)
T 2 B g PCA (imp$comp)
7 2 J. (2016).  miss-
? 4 MDA: Handling

Dim 2 (4.97%)
Dim 2 (4.97%)
0

Missing Values in
Multivariate Data
Analysis, JSS.

-10 s 0 5 s 0 05 o

Dim 1 (91.18%) Dim 1 (91.18%)

2 n = 69000 species - 6 traits. Estimated correlation between

Ecological data:
Pmass & Rmass ~ 0 (mean imputation) or ~ 1 (EM PCA)

2Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.




Constant (mean) imputation is consistent for prediction

X =X®(1—M)+NA® M. New feature space is RY = (R U {NA})9 .

4.6 9.1 NA 1 9.1 85 1 0 1 0
v — 7.9 % 21 NA 3 X 21 35 3 M= 0 1 0
8.3 NA 96 2 6.7 9.6 2 1 00
4.6 NA 55 6 42 55 6 1 00

Find a prediction function that minimizes the risk.

N2
Bayes rule: f* € argmin E {(Y — f(X)) ] .
f: RI—R

FR)=B|Y | | =E[Y | Xewsgru]

= > E[Y|Xobsimy M =m] Ly—p
me{0,1}9

= One model per pattern (27) (Rubin, 1984, generalized propensity score)
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Constant (mean) imputation is consistent

Framework - assumptions
e Y=1(X)+e
e Missing data MAR on Xj with My IL Xi| Xz, ..., X4.

e ¢ is a centered noise independent of (X, M)

(remains valid when missing values occur for several variables X, ..., Xj)



Constant (mean) imputation is consistent

Constant imputed entry x' = (x{, X2, ..., Xq): X{ = x11p—0 + alps—1

mpute(X') =E[Y X2 = X0, ..., Xg = xg, M1 = 1]
L= Lp(My=1]X=x2,...,. Xa=x4] >0
+ E[Y[X = x'TL—aLpip=1)X=s,..., Xs=xa]=0

+E[Y|X1 = x1, X0 = %0, ..., X4 = xg4, M1 = 0]]1X1/7£a.
Prediction with mean is equal to the Bayes function almost everywhere
e (X') = £(X) = E[Y|X = 5]
Rq: pointwise equality if using a constant out of range.
= Learn on the mean-imputed training data, impute the test set with

the same means and predict is optimal if the missing data are MAR and
the learning algorithm is universally consistent



of supervised learning with NA: Rationale

e Specific value, systematic like a code for missing
e The learner detects the code and recognizes it at the test time

With categorical data, just code " Missing”

With continuous data, any constant:

Need a lot of data (asymptotic result) and a super powerful learner

Train Test
Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!

Empirically good results for MNAR



of supervised learning with NA: Rationale

e Specific value, systematic like a code for missing
e The learner detects the code and recognizes it at the test time

With categorical data, just code " Missing”

With continuous data, any constant: out of range

Need a lot of data (asymptotic result) and a super powerful learner

Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!

Empirically good results for MNAR



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the

feature j*, the threshold z* which minimises the (quadratic) loss

X2
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CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the
feature j*, the threshold z* which minimises the (quadratic) loss

(j*,z*) € arg min E{(Y CE[Y|X < 2])° - Lx<s

(U,z)eS
+ (Y —E[Y|X > 2])*- ]1XJ.>Z]
X ® ® root
© o / \
®e

. . X1 <33 X1 >33

® O / \

@9 9 o X, <15 X >15
o © P

Xl 10



CART with missing values

root

X1 | X2 | Y

NA
NA

AW
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CART with missing values

root
X X, | Y X1 < s X1> 5
PA
3——NA
4

1) Select variable and threshold on observed values (1 & 4 for Xi)

IE[(Y —E[Y|X <z, M =0))* - Ix <z w0+ (Y — E[Y|X; > 2z, M; = 0])? - 11Xj>Z,Mj:0]

11



CART with missing values

X1

Xo

NA-
NA-

AIW|IN| =

1) Select variable and threshold on observed values (1 & 4 for Xi)

IE[(Y —E[Y|X < 2, M =0))* - Ix <z w0+ (Y — E[Y|X; > 2z, M; = 0])* - 11Xj>z,Mj:0]

2) Propagate observations (2 & 3) with missing values?

e Probabilistic split: Bernoulli( %5+

#L+#R

) (Rweeka)

e Block: Send all to a side by minimizing the error (xgboost, 1ightgbm)

e Surrogate split: Search another variable that gives a close partition (rpart)

11



Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1. {)?jgzor)?j:NA}vs{)?j>z}
2. {X; <z} vs {X;>zor X;=NA}
3. {X; #NA} vs {X; = NA}.

e The splitting location z depends on the missing values
e Missing values treated like a category (well to handle R UNA)
e Good for informative pattern (M explains Y)

Targets one model per pattern:

£ [Y’X] - me%;l}dE [Y | Xobs(mys M = m] Lpyy—m

e Implementation 3: grf package, scikit-learn, partykit

= Extremely good performances in practice for any mechanism.

3implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace 12
the missing entries once by +0o0 and once by —co



Consistency: 40% missing values MCAR
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Linear regression with missing
values - MLP




Explicit Bayes predictor with missing values

Linear model:

Y =80+ (X,8)+e, XeRY ¢ gaussian.

Bayes predictor for the linear model:
F*(X) = E[Y|X] = E[So + 87X | M, Xops(m)]
- BO + ﬁl—bs(/\/])Xobs(M) + 6,1—7,'5(/\/]) E[Xmis(l\/l) | M, Xobs(M)]

Assumptions on covariates and missing values

Gaussian pattern mixture model (PMM): X | (M = m) ~ N (ptm, m)
Gaussian assumption X ~ N (u, X) + MCAR and MAR

f*(Xob& M) = BS+<B;bsa Xobs>+<ﬂ;i5a ﬂmis+zmis,obs(Zobs)il(xobs_ﬂobs»
use of obs instead of obs(M) for lighter notations

(Also for Gaussian assumption + MNAR self mask gaussian) "



Estimation of the bayes predictor

Under Assumpt. the Bayes predictor is linear per pattern
f*(Xobs> M) - BS"'( ;bsa Xobs>+< ;ﬁsa Umis+zmis,obs(zobs)_I(Xobs_/fcobs»
Classical method: use Max Likelihood (EM algo) to estimate Y.

Issues: available implementation strugle with large d.
Most methods for MAR data or few MNAR variables.

Under linear model 4+ Gaussian pattern mixture model, a MLP:
with one hidden layer containing 29 hidden units

RelLU activation functions

fed with [X ® (1 — M), M] (X imputed by O concatenated with mask)

can achieve the Bayes rate.
Rationale: The MLP produces a prediction function piecewise affine.

Rq: reduce the model capacity by reducing the number of hidden units. 15



Neuman Networks to approximate the covariance matrix

The Bayes predictor is linear per pattern
f*(Xobs> M) = 55+< :bsa Xobs>+</8:-,i57 Mmis+zmis,obs(zobs)_I(Xobs_ﬂobs)>

Order-/ approx of (X for any m defined recursively:

obs(m)
Sc()f))s(m) (Id - zobs(m))sibs(n),) Id.

Neuman Series, S = Id, £ = 00! (Zops(m)) ™ = S peo(ld — Zops(m))*

16



Neuman Networks to approximate the covariance matrix

Order-/ approx of the Bayes predictor in MAR
fz ( obs ) <Bob57 obs> <Bmi57 Homis + Zmis,obssgl?s(m)()<obs - Mobs)>-

Order-/ approx of (X for any m defined recursively:

obs(m)
Sc()f))s(m) (Id - Z‘-’bs(m))sébs(nz) Id.

Neuman Series, S = Id, £ = 00! (Zops(m)) ™ = S peo(ld — Zops(m))*

= Neural network architecture to approximate the Bayes predictor

Figure 1: Depth of 3, m = 1 — m. Each weight matrix W) corresponds to a

. . . A G R . 16
simple transformation of the covariance matrix indicated in blue.



Networks with missing values: ©M nonlinearity

e Implementing a network with the matrix weights W*) = (/ — L i)
masked differently for each sample can be challenging

e Masked weights is equivalent to masking input & output vector.
Let vavector, m=1—-m. (Womm)v=(W(om)om

Classic network with multiplications by the mask nonlinearities © M

17



Networks with missing values: ©M nonlinearity

(2) "
WNeu
(Id — Xops) | B

T emertee— = - 1

e Implementing a network with the matrix weights W*) = (/ — L i)
masked differently for each sample can be challenging

e Masked weights is equivalent to masking input & output vector.
Let vavector, m=1—-m. (Womm)v=(W(om)om

Classic network with multiplications by the mask nonlinearities © M

Proposition (equivalence MLP - depth-0 Neumann network)
A MLP with ReLU activations, one hidden layer of d hidden units, and which

operates on the [X ® (1 — M), M], the input X imputed by 0 concatenated

with the mask M, is equivalent to the 0-depth NN -



Experiments for linear regression with missing values

e Max Likelihood: to estimate the parameters of the joint Gaussian
distribution (Xi, ..., X4, Y)) with EM. Predict by conditional
expectation of Y given X,ps.

e ICE + LR: conditional imputation with an iterative imputer
followed by linear regression.

e MLP: take as input the data imputed by 0 concatenated with the
mask [X ® (1 — M), M] with ReLU nonlinearity,
e MLP-Wide: one hidden layer with width increased (between d & 29)
e MLP-Deep: 1 to 10 hidden layers of d hidden units

e Neumann: The Neumann architecture with the ©M, choosing the
depth on a validation set.

18
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Figure 2: Predictive performances in various scenarios — varying

missing-value mechanisms, number of samples n, and number of features d.

= Best performances for MNAR scenario (50% of NA on all variables)

e More effective to increase the capacity of the Neumann network (depth) than
to increase the capacity (width) of MLP Wide.

e Neumann network learn improved weights compared to Neumann iterations



Discussion - challenges




Take-home message. Supervised learning with missing values.

Supervised learning different from usual inferential probabilistic models.
Solutions useful in practice robust to the missing-value mechanisms but
needs powerful model.

Powerful learner with missing values
e Incomplete train and test — same imputation model
e Single constant imputation is consistent with a powerful learner

e Tree-based models : Missing Incorporated in Attribute
e To be done: nonasymptotic results, uncertainty, distributional shift:
No NA in the test? Proofs in MNAR

Linear regression with missing values

e The Bayes predictor is explicit under Gaussian assumptions/ MAR
and gaussian self mask but high-dimensional.

e Approx include MLP which can be consistent and Neuman Network
e New architecture for network with missing data: ®M nonlinearity.

20



Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

J., . Mayer, N. Tierney & N. Vialaneix
Project funded by the R consortium (Infrastructure Steering Committee)*
Aim: a reference platform on the theme of missing data management
e list existing packages
e available literature
e tutorials
e analysis workflows on data
e main actors
= Federate the community

= Contribute!

4https ://www.r-consortium.org/projects/call-for-proposals

21


https://rmisstastic.netlify.com/
 https://www.r-consortium.org/projects/call-for-proposals

Ressources

Examples:

o Lecture 5 - General tutorial : Statistical Methods for Analysis with
Missing Data (Mauricio Sadinle)

e Lecture - Multiple Imputation: mice by Nicole Erler ©

e Longitudinal data, Time Series Imputation (Steffen Moritz - very
active contributor of r-miss-tastic), Principal Component Methods’

Shttps://rmisstastic.netlify.com /lectures/

Shttps://rmisstastic.netlify.com/tutorials/erler_course_
multipleimputation_2018/erler_practical_mice_2018

7https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf

22


 https://rmisstastic.netlify.com/tutorials/erler_course_multipleimputation_2018/erler_practical_mice_2018 
 https://rmisstastic.netlify.com/tutorials/erler_course_multipleimputation_2018/erler_practical_mice_2018 
https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf

Thank you

1HERE ARE TWO TYP
OF PEOPLE IN THIS WO

1) Thost \{vho can extra
from incomplete
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