Supervised learning with missing values

Julie Josse
Ecole Polytechnique, INRIA
8 September 2020
Workshop on Missing Data Challenges in Computation, Statistics and Applications, Princeton

Introduction

Collaborators on supervised learning with missing values

- M. Le Morvan, Postdoc at INRIA, Paris.
- E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris.

Topic: random forests.

- G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikitlearn in python.

\Rightarrow Random Forests with missing values

1. Consistency of supervised learning with missing values. (2019). Revis JMLR.
\Rightarrow Linear regression with missing values - MultiLayer perceptron
2. Linear predictor on linearly-generated data with missing values: non consistency and solutions. AISTAT2020.
3. Neumann networks: differential programming for supervised learning with missing values. Submitted Neurips2020.

Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Estimate causal effect: Administration of the treatment
"tranexamic acid" (within 3 hours after the accident) on the outcome mortality for traumatic brain injury patients. ${ }^{1}$

[^0]
Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Predict platelet levels given pre-hospital features
Ex linear regression/ random forests with covariates with missing values

Missing values

Percentage of missing values

Different pattern: sporadic \& systematic (missing variable in one hospital) Different types: MCAR, MAR, MNAR

Random Forests with missing

 values
Missing values in a predictive framework (not inferential)

- Aim: target an outcome Y (not estimate parameters and their variance)
- Specificities: train \& test sets with missing values
- Methods ${ }^{1}$: (in practice) imputation prior to prediction
- Separate: impute train and test separately (with a different model)
- Grouped/ semi-supervised: impute train and test simultaneously but the predictive model is learned only on the training imputed data set.
- Imputation train and test sets with the same model Issue: methods (missForest) are "black-boxes" i.e. take as an input the incomplete data and output the completed data

Easy for univariate imputation: mean of each colum of the train.

[^1]
Mean imputation is bad for estimation

Individuals factor map (PCA)

Variables factor map (PCA)

PCA with mean imputation
library (FactoMineR) PCA (ecolo)
Warning message: Missing are imputed by the mean of the variable:
You should use imputePCA from missMDA

EM-PCA

library (missMDA) imp <- imputePCA (ecolo) PCA (imp\$comp)
J. (2016). missMDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ${ }^{2} n=69000$ species -6 traits. Estimated correlation between
Pmass \& Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
${ }^{2}$ Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.

Constant (mean) imputation is consistent for prediction

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$Y=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{X}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \quad X=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the risk.

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M), M}\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern $\left(2^{d}\right)$ (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent for prediction

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$Y=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{X}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \quad X=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the risk.

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \underset{\mathbb{R}^{d} \rightarrow \mathbb{R}}{ }}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M), M}\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern $\left(2^{d}\right)$ (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent

Framework - assumptions

- $Y=f(X)+\varepsilon$
- $X=\left(X_{1}, \ldots, X_{d}\right)$ has a continuous density $g>0$ on $[0,1]^{d}$
- $\|f\|_{\infty}<\infty$
- Missing data MAR on X_{1} with $M_{1} \Perp X_{1} \mid X_{2}, \ldots, X_{d}$.
- $\left(x_{2}, \ldots, x_{d}\right) \mapsto \mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]$ is continuous
- ε is a centered noise independent of $\left(X, M_{1}\right)$
(remains valid when missing values occur for several variables X_{1}, \ldots, X_{j})

Constant (mean) imputation is consistent

Constant imputed entry $x^{\prime}=\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right): x_{1}^{\prime}=x_{1} \mathbb{1}_{M_{1}=0}+\alpha \mathbb{1}_{M_{1}=1}$

Theorem. (J. et al. 2019)

$$
\begin{aligned}
f_{\text {impute }}^{\star}\left(x^{\prime}\right)= & \mathbb{E}\left[Y \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=1\right] \\
& \mathbb{1}_{\left.x_{1}^{\prime}=\alpha\right]} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]>0} \\
& +\mathbb{E}\left[Y \mid X=x^{\prime}\right] \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]=0} \\
& +\mathbb{E}\left[Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=0\right] \mathbb{1}_{x_{1}^{\prime} \neq \alpha} .
\end{aligned}
$$

Prediction with mean is equal to the Bayes function almost everywhere

$$
f_{\text {impute }}^{\star}\left(X^{\prime}\right)=f^{\star}(\tilde{X})=\mathbb{E}[Y \mid \tilde{X}=\tilde{x}]
$$

Rq: pointwise equality if using a constant out of range.
\Rightarrow Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:
- Need a lot of data (asymptotic result) and a super powerful learner

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range
- Need a lot of data (asymptotic result) and a super powerful learner

Train

Test

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART with missing values

root

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

1) Select variable and threshold on observed values ($1 \& 4$ for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

$$
x_{1} \leq \stackrel{s}{1}_{\text {root }}^{X_{1}>s_{1}}
$$

1) Select variable and threshold on observed values ($1 \& 4$ for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.
2) Propagate observations $(2 \& 3)$ with missing values?

- Block: Send all to a side by minimizing the error (xgboost, lightgbm)
- Surrogate split: Search another variable that gives a close partition (rpart)

Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1. $\left\{\widetilde{X}_{j} \leq z\right.$ or $\left.\widetilde{X}_{j}=\mathrm{NA}\right\}$ vs $\left\{\widetilde{X}_{j}>z\right\}$
2. $\left\{\widetilde{X}_{j} \leq z\right\}$ vs $\left\{\widetilde{X}_{j}>z\right.$ or $\left.\widetilde{X}_{j}=\mathrm{NA}\right\}$
3. $\left\{\widetilde{X}_{j} \neq \mathrm{NA}\right\}$ vs $\left\{\widetilde{X}_{j}=\mathrm{NA}\right\}$.

- The splitting location z depends on the missing values
- Missing values treated like a category (well to handle $\mathbb{R} \cup N A$)
- Good for informative pattern (M explains Y)

Targets one model per pattern:

$$
\mathbb{E}[Y \mid \tilde{X}]=\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
$$

- Implementation ${ }^{3}$: grf package, scikit-learn, partykit
\Rightarrow Extremely good performances in practice for any mechanism.

[^2]
Consistency: 40\% missing values MCAR

Linear problem (high noise)

Sample size

- Surrogates (rpart)
- Mean imputation

Friedman problem (high noise)

Sample size

- Gaussian imputation - MIA

Non-linear problem (low noise)

- Bayes rate

- Block (XGBoost)

Linear regression with missing values - MLP

Explicit Bayes predictor with missing values

Linear model:

$$
Y=\beta_{0}+\langle X, \beta\rangle+\varepsilon, \quad X \in \mathbb{R}^{d}, \varepsilon \text { gaussian. }
$$

Bayes predictor for the linear model:

$$
\begin{aligned}
f^{\star}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[\beta_{0}+\beta^{\top} X \mid M, X_{o b s(M)}\right] \\
& =\beta_{0}+\beta_{o b s(M)}^{\top} X_{o b s(M)}+\beta_{\operatorname{mis}(M)}^{\top} \mathbb{E}\left[X_{\operatorname{mis}(M)} \mid M, X_{o b s(M)}\right]
\end{aligned}
$$

Assumptions on covariates and missing values

Gaussian pattern mixture model (PMM): $X \mid(M=m) \sim \mathcal{N}\left(\mu_{m}, \Sigma_{m}\right)$ Gaussian assumption $X \sim \mathcal{N}(\mu, \Sigma)+$ MCAR and MAR

Under Assump. the Bayes predictor is linear per pattern

$f^{\star}\left(X_{o b s}, M\right)=\beta_{0}^{\star}+\left\langle\beta_{o b s}^{\star}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}^{\star}, \mu_{m i s}+\sum_{m i s, o b s}\left(\sum_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$ use of obs instead of $o b s(M)$ for lighter notations
(Also for Gaussian assumption + MNAR self mask gaussian)

Estimation of the bayes predictor

Under Assumpt. the Bayes predictor is linear per pattern

$f^{\star}\left(X_{o b s}, M\right)=\beta_{0}^{\star}+\left\langle\beta_{o b s}^{\star}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}^{\star}, \mu_{m i s}+\Sigma_{m i s, o b s}\left(\Sigma_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$
Classical method: use Max Likelihood (EM algo) to estimate Σ.
Issues: available implementation strugle with large d.
Most methods for MAR data or few MNAR variables.

Theorem. Bayes consistency of a MLP. Le Morvan et al. (2020)

Under linear model + Gaussian pattern mixture model, a MLP:

- with one hidden layer containing 2^{d} hidden units
- ReLU activation functions
- fed with $[X \odot(1-M), M]$ (\tilde{X} imputed by 0 concatenated with mask) can achieve the Bayes rate.

Rationale: The MLP produces a prediction function piecewise affine.
Rq: reduce the model capacity by reducing the number of hidden units.

Neuman Networks to approximate the covariance matrix

The Bayes predictor is linear per pattern
$f^{\star}\left(X_{o b s}, M\right)=\beta_{0}^{\star}+\left\langle\beta_{o b s}^{\star}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}^{\star}, \mu_{m i s}+\Sigma_{m i s, o b s}\left(\sum_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$
Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$

Neuman Networks to approximate the covariance matrix

Order- ℓ approx of the Bayes predictor in MAR

$$
f_{\ell}^{\star}\left(X_{o b s}, M\right)=\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\sum_{m i s, o b s} S_{o b s(m)}^{(\ell)}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle .
$$

Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$
\Rightarrow Neural network architecture to approximate the Bayes predictor

Figure 1: Depth of $3, \bar{m}=1-m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

Networks with missing values: $\odot M$ nonlinearity

- Implementing a network with the matrix weights $W^{(k)}=\left(I-\Sigma_{o b s(m)}\right)$ masked differently for each sample can be challenging
- Masked weights is equivalent to masking input \& output vector. Let v a vector, $\bar{m}=1-m .\left(W \odot \bar{m} \bar{m}^{\top}\right) v=(W(v \odot \bar{m})) \odot \bar{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Networks with missing values: $\odot M$ nonlinearity

- Implementing a network with the matrix weights $W^{(k)}=\left(I-\Sigma_{o b s(m)}\right)$ masked differently for each sample can be challenging
- Masked weights is equivalent to masking input \& output vector. Let v a vector, $\bar{m}=1-m .\left(W \odot \bar{m} \bar{m}^{\top}\right) v=(W(v \odot \bar{m})) \odot \bar{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Proposition (equivalence MLP - depth-0 Neumann network)

A MLP with ReLU activations, one hidden layer of d hidden units, and which operates on the $[X \odot(1-M), M]$, the input X imputed by 0 concatenated with the mask M, is equivalent to the 0 -depth $N N$

Experiments for linear regression with missing values

- Max Likelihood: to estimate the parameters of the joint Gaussian distribution $\left(X_{1}, \ldots, X_{d}, Y\right)$ with EM. Predict by conditional expectation of Y given $X_{\text {obs }}$.
- ICE + LR: conditional imputation with an iterative imputer followed by linear regression.
- MLP: take as input the data imputed by 0 concatenated with the mask $[X \odot(1-M), M]$ with ReLU nonlinearity,
- MLP-Wide: one hidden layer with width increased (between $d \& 2^{d}$)
- MLP-Deep: 1 to 10 hidden layers of d hidden units
- Neumann: The Neumann architecture with the $\odot M$, choosing the depth on a validation set.

Results

Figure 2: Predictive performances in various scenarios - varying missing-value mechanisms, number of samples n, and number of features d.
\Rightarrow Best performances for MNAR scenario (50% of NA on all variables)

- More effective to increase the capacity of the Neumann network (depth) than to increase the capacity (width) of MLP Wide.
- Neumann network learn improved weights compared to Neumann iterations

Discussion - challenges

Take-home message. Supervised learning with missing values.

Supervised learning different from usual inferential probabilistic models. Solutions useful in practice robust to the missing-value mechanisms but needs powerful model.

Powerful learner with missing values

- Incomplete train and test \rightarrow same imputation model
- Single constant imputation is consistent with a powerful learner
- Tree-based models: Missing Incorporated in Attribute
- To be done: nonasymptotic results, uncertainty, distributional shift: No NA in the test? Proofs in MNAR

Linear regression with missing values

- The Bayes predictor is explicit under Gaussian assumptions/ MAR and gaussian self mask but high-dimensional.
- Approx include MLP which can be consistent and Neuman Network
- New architecture for network with missing data: $\odot M$ nonlinearity.

Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic
J., I. Mayer, N. Tierney \& N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee) ${ }^{4}$
Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
\Rightarrow Federate the community
\Rightarrow Contribute!
${ }^{4}$ https://www.r-consortium.org/projects/call-for-proposals

Ressources

Examples:

- Lecture ${ }^{5}$ - General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- Lecture - Multiple Imputation: mice by Nicole Erler ${ }^{6}$
- Longitudinal data, Time Series Imputation (Steffen Moritz - very active contributor of r-miss-tastic), Principal Component Methods ${ }^{7}$

```
5}\mathrm{ https://rmisstastic.netlify.com/lectures/
6}\mathrm{ https://rmisstastic.netlify.com/tutorials/erler_course_
multipleimputation_2018/erler_practical_mice_2018
    7https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
```


Thank you

1) Those who can extrapolate from incomplete data

[^0]: ${ }^{1}$ Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. Annals Of Applied Statistics 2020.

[^1]: ${ }^{1}$ Rmistatic platform to organize ressources - Task view: more than 150 packages

[^2]: ${ }^{3}$ implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace

