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Introduction



Collaborators on supervised learning with missing values

• M. Le Morvan, Postdoc at INRIA, Paris.

• E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris.

Topic: random forests.

• G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikitlearn in python.

⇒ Random Forests with missing values

1. Consistency of supervised learning with missing values. (2019). Revis JMLR.

⇒ Linear regression with missing values - MultiLayer perceptron

2. Linear predictor on linearly-generated data with missing values: non

consistency and solutions. AISTAT2020.

3. Neumann networks: differential programming for supervised learning with

missing values. Submitted Neurips2020. 2



Traumabase project: decision support for trauma patients.

• 20000 trauma patients

• 250 continuous and categorical variables: heterogeneous

• 11 hospitals: multilevel data

• 4000 new patients/ year

Center Accident Age Sex Lactactes BP Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NR yes 318000

Pitie moto 30 w Imp 107 no 211000

HEGP knife 16 m 2.5 118 no 184000
...

. . .

⇒ Estimate causal effect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients.
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Traumabase project: decision support for trauma patients.

• 20000 trauma patients

• 250 continuous and categorical variables: heterogeneous

• 11 hospitals: multilevel data

• 4000 new patients/ year

Center Accident Age Sex Lactactes BP Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NR yes 318000

Pitie moto 30 w Imp 107 no 211000

HEGP knife 16 m 2.5 118 no 184000
...

. . .

⇒ Estimate causal effect: Administration of the treatment

”tranexamic acid” (within 3 hours after the accident) on the outcome

mortality for traumatic brain injury patients. 1

1Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J.

Annals Of Applied Statistics 2020.
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Traumabase project: decision support for trauma patients.

• 20000 trauma patients

• 250 continuous and categorical variables: heterogeneous

• 11 hospitals: multilevel data

• 4000 new patients/ year

Center Accident Age Sex Lactactes BP Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NR yes 318000

Pitie moto 30 w Imp 107 no 211000

HEGP knife 16 m 2.5 118 no 184000
...

. . .

⇒ Predict platelet levels given pre-hospital features

Ex linear regression/ random forests with covariates with missing values

⇒
Estimate causal effect: Administration of the treatment ”tranexamic

acid” (within 3 hours after the accident) on the outcome mortality for

traumatic brain injury patients.
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Missing values

0

25

50

75

A
ci

de
.tr

an
ex

am
iq

ue
A

IS
.e

xt
er

ne
A

IS
.fa

ce
A

IS
.te

te
C

at
ec

ho
la

m
in

es

C
ho

c.
he

m
or

ra
gi

qu
e

C
ra

ni
ec

to
m

ie
.d

ec
om

pr
es

si
ve

D
V

E
IS

S
.2

O
sm

ot
he

ra
pi

e
P

IC
Tr

au
m

a.
C

en
te

r
Tr

au
m

a.
cr

an
ie

n

A
no

m
al

ie
.p

up
ill

ai
re

IO
T.

S
M

U
R

M
yd

ria
se FC

G
la

sg
ow

.in
iti

al
AC

R
.1

D
el

ta
.h

em
oc

ue
IG

S
.II H
b

PA
S

PA
D

D
C

.e
n.

re
a

S
pO

2

Tr
ai

te
m

en
t.a

nt
ia

gr
eg

an
ts

Tr
ai

te
m

en
t.a

nt
ic

oa
gu

la
nt

Ve
nt

ila
tio

n.
Fi

O
2

PA
S

.m
in

FC
.m

ax
PA

D
.m

in
S

pO
2.

m
in

G
la

sg
ow

.m
ot

eu
r.i

ni
tia

l

B
lo

c.
J0

.n
eu

ro
ch

iru
rg

ie
Te

m
ps

.li
eu

x.
ho

p
H

em
oc

ue
.in

it
D

TC
.IP

.m
ax

PA
S

.S
M

U
R

FC
.S

M
U

R
PA

D
.S

M
U

R
G

la
sg

ow
.s

or
tie

M
an

ni
to

l.S
S

H
C

au
se

.d
u.

D
C

R
eg

r.m
yd

ria
se

.o
sm

o

Variable

P
er

ce
nt

ag
e

NA
Not Informed
Not made
Not Applicable
Impossible
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Different pattern: sporadic & systematic (missing variable in one hospital)

Different types: MCAR, MAR, MNAR 4



Random Forests with missing

values



Missing values in a predictive framework (not inferential)

• Aim: target an outcome Y (not estimate parameters and their variance)

• Specificities: train & test sets with missing values

• Methods 1: (in practice) imputation prior to prediction

• Separate: impute train and test separately (with a different model)

• Grouped/ semi-supervised: impute train and test simultaneously but

the predictive model is learned only on the training imputed data set.

• Imputation train and test sets with the same model

Issue: methods (missForest) are ”black-boxes” i.e. take as an

input the incomplete data and output the completed data

Easy for univariate imputation: mean of each colum of the train.

1Rmistatic platform to organize ressources - Task view: more than 150 packages
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Mean imputation is bad for estimation
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Ecological data: 2 n = 69000 species - 6 traits. Estimated correlation between

Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
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Constant (mean) imputation is consistent for prediction

X̃ = X � (1−M) + NA�M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6

7.9

8.3

4.6

 X̃ =


9.1 NA 1

2.1 NA 3

NA 9.6 2

NA 5.5 6

 X =


9.1 8.5 1

2.1 3.5 3

6.7 9.6 2

4.2 5.5 6

 M =


0 1 0

0 1 0

1 0 0

1 0 0


Find a prediction function that minimizes the risk.

Bayes rule: f ∗ ∈ arg min
f : R̃d→R

E
[(

Y − f (X̃ )
)2
]
.

f ∗(X̃ ) = E
[
Y | X̃

]
= E

[
Y | Xobs(M),M

]
=

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern (2d) (Rubin, 1984, generalized propensity score)
7
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Constant (mean) imputation is consistent

Framework - assumptions

• Y = f (X ) + ε

• X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

• ‖f ‖∞ <∞
• Missing data MAR on X1 with M1 |= X1|X2, . . . ,Xd .

• (x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous

• ε is a centered noise independent of (X ,M1)

(remains valid when missing values occur for several variables X1, . . . , Xj)

8



Constant (mean) imputation is consistent

Constant imputed entry x ′ = (x ′1, x2, . . . , xd): x ′1 = x11M1=0 + α1M1=1

Theorem. (J. et al. 2019)

f ?impute(x ′) =E[Y |X2 = x2, . . . ,Xd = xd ,M1 = 1]

1x′1=α]1P[M1=1|X2=x2,...,Xd=xd ]>0

+ E[Y |X = x ′]1x′1=α1P[M1=1|X2=x2,...,Xd=xd ]=0

+ E[Y |X1 = x1,X2 = x2, . . . ,Xd = xd ,M1 = 0]1x′1 6=α.

Prediction with mean is equal to the Bayes function almost everywhere

f ?impute(X ′) = f ?(X̃ ) = E[Y |X̃ = x̃ ]

Rq: pointwise equality if using a constant out of range.

⇒ Learn on the mean-imputed training data, impute the test set with

the same means and predict is optimal if the missing data are MAR and

the learning algorithm is universally consistent
8



Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant:

• Need a lot of data (asymptotic result) and a super powerful learner
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Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!

Empirically good results for MNAR 9



Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant: out of range

• Need a lot of data (asymptotic result) and a super powerful learner
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Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!

Empirically good results for MNAR 9



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the

feature j?, the threshold z? which minimises the (quadratic) loss

(j?, z?) ∈ arg min
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z ]

)2 · 1Xj≤z

+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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CART with missing values

X1 X2 Y

1

2 NA

3 NA

4

root

X1 ≤ s1 X1 > s1

X2 ≤ s2 X2 > s2

1) Select variable and threshold on observed values (1 & 4 for X1)

E
[(

Y − E[Y |Xj ≤ z,Mj = 0]
)2 · 1Xj≤z,Mj =0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2 · 1Xj>z,Mj =0

]
.

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: Bernoulli( #L
#L+#R ) (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)

• Surrogate split: Search another variable that gives a close partition (rpart)

11
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Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1. {X̃j ≤ z or X̃j = NA} vs {X̃j > z}
2. {X̃j ≤ z} vs {X̃j > z or X̃j = NA}
3. {X̃j 6= NA} vs {X̃j = NA}.

• The splitting location z depends on the missing values

• Missing values treated like a category (well to handle R ∪ NA)

• Good for informative pattern (M explains Y )

Targets one model per pattern:

E
[
Y
∣∣∣X̃] =

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

• Implementation 3: grf package, scikit-learn, partykit

⇒ Extremely good performances in practice for any mechanism.
3implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace

the missing entries once by +∞ and once by −∞
12



Consistency: 40% missing values MCAR
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Linear regression with missing

values - MLP



Explicit Bayes predictor with missing values

Linear model:

Y = β0 + 〈X , β〉+ ε, X ∈ Rd , ε gaussian.

Bayes predictor for the linear model:

f ?(X̃ ) = E[Y |X̃ ] = E[β0 + βTX | M,Xobs(M)]

= β0 + βT
obs(M)Xobs(M) + βT

mis(M) E[Xmis(M) | M,Xobs(M)]

Assumptions on covariates and missing values

Gaussian pattern mixture model (PMM): X | (M = m) ∼ N (µm,Σm)

Gaussian assumption X ∼ N (µ,Σ) + MCAR and MAR

Under Assump. the Bayes predictor is linear per pattern

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉
use of obs instead of obs(M) for lighter notations

(Also for Gaussian assumption + MNAR self mask gaussian)
14



Estimation of the bayes predictor

Under Assumpt. the Bayes predictor is linear per pattern

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉

Classical method: use Max Likelihood (EM algo) to estimate Σ.

Issues: available implementation strugle with large d .

Most methods for MAR data or few MNAR variables.

Theorem. Bayes consistency of a MLP. Le Morvan et al. (2020)

Under linear model + Gaussian pattern mixture model, a MLP:

• with one hidden layer containing 2d hidden units

• ReLU activation functions

• fed with [X � (1−M),M] (X̃ imputed by 0 concatenated with mask)

can achieve the Bayes rate.

Rationale: The MLP produces a prediction function piecewise affine.

Rq: reduce the model capacity by reducing the number of hidden units. 15



Neuman Networks to approximate the covariance matrix

The Bayes predictor is linear per pattern

f ?(Xobs ,M) = β?0 +〈β?obs ,Xobs〉+〈β?mis , µmis+Σmis,obs(Σobs)−1(Xobs−µobs)〉

Order-` approx of (Σ−1
obs(m)) for any m defined recursively:

S
(`)
obs(m) = (Id − Σobs(m))S

(`−1)
obs(m) + Id .

Neuman Series, S (0) = Id , ` =∞: (Σobs(m))
−1 =

∑∞
k=0(Id − Σobs(m))

k

⇒ Neural network architecture to approximate the Bayes predictor

x � m̄ −

µ� m̄

S(0) W
(1)
Neu

(Id − Σobs )
+ W

(2)
Neu

(Id − Σobs )
+ W

(3)
Mix

(Σmis,obs )
+

µ� m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumann iterations Non-linearity

Figure 1: Depth of 3, m̄ = 1−m. Each weight matrix W (k) corresponds to a

simple transformation of the covariance matrix indicated in blue.
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Neuman Networks to approximate the covariance matrix
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Networks with missing values: �M nonlinearity

x � m̄ −

µ� m̄

S(0) W
(1)
Neu

(Id − Σobs )
+ W

(2)
Neu

(Id − Σobs )
+ W

(3)
Mix

(Σmis,obs )
+

µ� m

Wβ

β
Y

�m̄ �m̄ �m̄ �m

Neumann iterations Non-linearity

• Implementing a network with the matrix weights W (k) = (I − Σobs(m))

masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector.

Let v a vector, m̄ = 1−m. (W � m̄m̄>)v = (W (v � m̄))� m̄

Classic network with multiplications by the mask nonlinearities �M

Proposition (equivalence MLP - depth-0 Neumann network)

A MLP with ReLU activations, one hidden layer of d hidden units, and which

operates on the [X � (1−M),M], the input X imputed by 0 concatenated

with the mask M, is equivalent to the 0-depth NN

17
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Experiments for linear regression with missing values

• Max Likelihood: to estimate the parameters of the joint Gaussian

distribution (X1, ...,Xd ,Y ) with EM. Predict by conditional

expectation of Y given Xobs .

• ICE + LR: conditional imputation with an iterative imputer

followed by linear regression.

• MLP: take as input the data imputed by 0 concatenated with the

mask [X � (1−M),M] with ReLU nonlinearity,

• MLP-Wide: one hidden layer with width increased (between d & 2d)

• MLP-Deep: 1 to 10 hidden layers of d hidden units

• Neumann: The Neumann architecture with the �M, choosing the

depth on a validation set.
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Results
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Figure 2: Predictive performances in various scenarios — varying

missing-value mechanisms, number of samples n, and number of features d .

⇒ Best performances for MNAR scenario (50% of NA on all variables)

• More effective to increase the capacity of the Neumann network (depth) than

to increase the capacity (width) of MLP Wide.

• Neumann network learn improved weights compared to Neumann iterations 19



Discussion - challenges



Take-home message. Supervised learning with missing values.

Supervised learning different from usual inferential probabilistic models.

Solutions useful in practice robust to the missing-value mechanisms but

needs powerful model.

Powerful learner with missing values

• Incomplete train and test → same imputation model

• Single constant imputation is consistent with a powerful learner

• Tree-based models : Missing Incorporated in Attribute

• To be done: nonasymptotic results, uncertainty, distributional shift:

No NA in the test? Proofs in MNAR

Linear regression with missing values

• The Bayes predictor is explicit under Gaussian assumptions/ MAR

and gaussian self mask but high-dimensional.

• Approx include MLP which can be consistent and Neuman Network

• New architecture for network with missing data: �M nonlinearity.

20



Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

J., I. Mayer, N. Tierney & N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee)4

Aim: a reference platform on the theme of missing data management

• list existing packages

• available literature

• tutorials

• analysis workflows on data

• main actors

⇒ Federate the community

⇒ Contribute!
4https://www.r-consortium.org/projects/call-for-proposals
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Ressources

Examples:

• Lecture 5 - General tutorial : Statistical Methods for Analysis with

Missing Data (Mauricio Sadinle)

• Lecture - Multiple Imputation: mice by Nicole Erler 6

• Longitudinal data, Time Series Imputation (Steffen Moritz - very

active contributor of r-miss-tastic), Principal Component Methods7

5https://rmisstastic.netlify.com/lectures/
6https://rmisstastic.netlify.com/tutorials/erler_course_

multipleimputation_2018/erler_practical_mice_2018
7https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
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Thank you

23


	Introduction
	Random Forests with missing values
	Linear regression with missing values - MLP
	Discussion - challenges

