Supervised learning with missing values

Julie Josse INRIA, Ecole Polytechnique 16 November 2020

Edinburgh - University Statistics Seminar

Introduction

Collaborators on supervised learning with missing values

- M. Le Morvan, Postdoc at INRIA, Paris.
- E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris. Topic: random forests.
- G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikit-learn in python.

- \Rightarrow Random Forests with missing values
- 1. Consistency of supervised learning with missing values. (2019). Revis JMLR.
- \Rightarrow Linear regression with missing values MultiLayer perceptron
- 2. Linear predictor on linearly-generated data with missing values: non consistency and solutions. AISTAT2020.

3. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020 (Oral).

Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	W	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	

Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex Lactactes		BP Shock		Platelet		
Beaujon	fall	54	m	NM	180	yes	292000		
Pitie	itie gun		gun 26 m NA		NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000		
Pitie	moto	30	W	Imp	107	no	211000		
HEGP	knife	16	m	2.5	118	no	184000		
:								·.,	

\Rightarrow Estimate causal effect: Administration of the treatment

"tranexamic acid" (within 3 hours after the accident) on the **outcome** mortality for traumatic brain injury patients. 1

 $^{^{1}\}mbox{Doubly}$ robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. Annals Of Applied Statistics 2020.

Traumabase project: decision support for trauma patients.

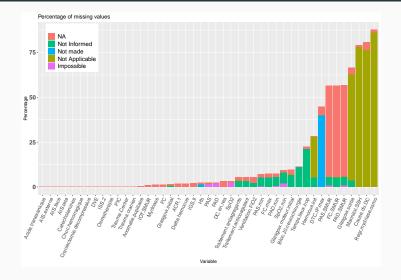
- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet				
Beaujon	fall	54	m	NM	180	yes	292000				
Pitie	Pitie gun		Pitie gun 2		gun 26 m NA		NA	131 no		323000	
Beaujon	moto	63	m	3.9	NR	yes	318000				
Pitie	moto	30	W	Imp	107	no	211000				
HEGP	knife	16	m	2.5	118	no	184000				
:								۰.			

 \Rightarrow **Predict** platelet levels given pre-hospital features

Ex linear regression/ random forests with covariates with missing values

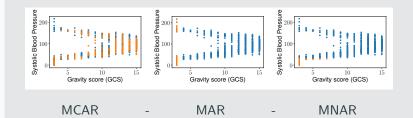
Missing values



Different pattern: sporadic & systematic (missing variable in one hospital) **Different types**: MCAR, MAR, MNAR

Missing values mechanism

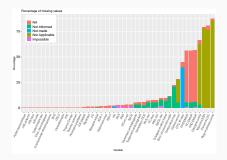
Rubin's taxonomy Rubin, 1976



Orange: missing values for Systolic Blood Pressure - Gravity index (GCS) is always observed

MCAR (completely at random): Proba to be missing does not depend on SBP neither on gravity MAR: Proba depends on gravity (we do not measure for too severe patients) MNAR (not at random): Proba depends on SBP (low SBP not measured)

Complete-case analysis



```
?lm, ?glm, na.action = na.omit
```

"One of the ironies of Big Data is that missing data play an ever more significant role" (R. Sameworth, 2019)

An $n \times p$ matrix, each entry is missing with probability 0.01

- $p = 5 \implies \approx 95\%$ of rows kept
- $p = 300 \implies \approx 5\%$ of rows kept

Random Forests with missing values

Missing values in a predictive framework (not inferential)

- <u>Aim</u>: target an outcome Y (not estimate parameters and their variance)
- <u>Specificities</u>: train & test sets with missing values. If not: distributional shift. Two data generating process (variables+missing mechanism)

¹Rmistatic platform to organize ressources - Task view: more than 150 packages

Missing values in a predictive framework (not inferential)

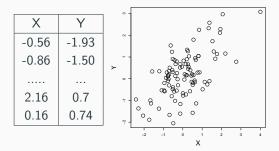
- <u>Aim</u>: target an outcome Y (not estimate parameters and their variance)
- <u>Specificities</u>: train & test sets with missing values. If not: distributional shift. Two data generating process (variables+missing mechanism)
- <u>Methods 1</u>: (in practice) imputation prior to prediction
 - Separate: impute train and test separately (with a different model)
 - Grouped/ semi-supervised: impute train and test simultaneously but the predictive model is learned only on the training imputed data set.
 - Imputation train and test sets with the same model Issue: methods (missForest) are "black-boxes" *i.e.* take as an input the incomplete data and output the completed data

Easy for univariate imputation: mean of each colum of the train.

¹Rmistatic platform to organize ressources - Task view: more than 150 packages

Mean imputation

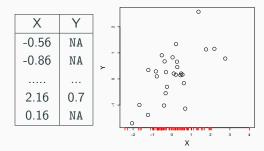
•
$$(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$$



$$\begin{array}{c|c} \mu_y = 0 & \hat{\mu}_y = -0.01 \\ \sigma_y = 1 & \hat{\sigma}_y = 1.01 \\ \rho_{xy} = 0.6 & \hat{\rho} = 0.66 \end{array}$$

Mean imputation

- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on \boldsymbol{Y}



$$\mu_y = 0 \qquad \hat{\mu}_y = 0.18$$

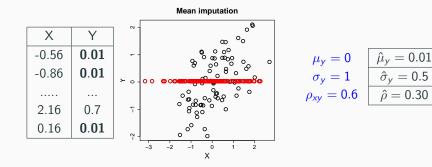
$$\sigma_y = 1 \qquad \hat{\sigma}_y = 0.9$$

$$\hat{\rho}_{xy} = 0.6 \qquad \hat{\rho}_{xy} = 0.6$$

ρ

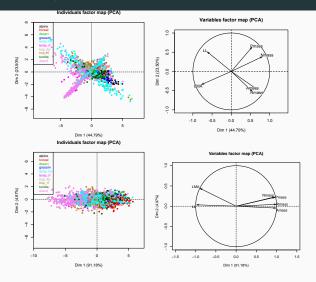
Mean imputation

- $(x_i, y_i) \underset{\text{i.i.d.}}{\sim} \mathcal{N}_2((\mu_x, \mu_y), \Sigma_{xy})$
- 70 % of missing entries completely at random on Y
- Estimate parameters on the mean imputed data



Mean imputation deforms joint and marginal distributions

Mean imputation is bad for estimation



PCA with mean imputation

library(FactoMineR)
PCA(ecolo)
Warning message: Missing
are imputed by the mean
of the variable:
You should use imputePCA
from missMDA

EM-PCA

library(missMDA)
imp <- imputePCA(ecolo)
PCA(imp\$comp)</pre>

J. (2016). miss-MDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ² n = 69000 species - 6 traits. Estimated correlation between Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

²Wright, I. et al. (2004). The worldwide leaf economics spectrum. *Nature*.

Constant (mean) imputation is consistent for prediction

$$ilde{X}=X\odot(1-M)+ ext{NA}\odot M.$$
 New feature space is $\widetilde{\mathbb{R}}^d=(\mathbb{R}\cup\{ ext{NA}\})^d$

$$Y = \begin{pmatrix} 4.6\\ 7.9\\ 8.3\\ 4.6 \end{pmatrix} \quad \tilde{X} = \begin{pmatrix} 9.1 & \text{NA} & 1\\ 2.1 & \text{NA} & 3\\ \text{NA} & 9.6 & 2\\ \text{NA} & 5.5 & 6 \end{pmatrix} \quad X = \begin{pmatrix} 9.1 & 8.5 & 1\\ 2.1 & 3.5 & 3\\ 6.7 & 9.6 & 2\\ 4.2 & 5.5 & 6 \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

Find a prediction function that minimizes the expected risk.

Bayes rule:
$$f^* \in \underset{f: \widetilde{\mathbb{R}}^d \to \mathbb{R}}{\arg \min} \mathbb{E}\left[\left(Y - f(\tilde{X})\right)^2\right]$$

$$f^{*}(\tilde{X}) = \mathbb{E}\left[Y \mid \tilde{X}\right] = \mathbb{E}\left[Y \mid X_{obs(M),M}\right]$$
$$= \sum_{m \in \{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m\right] \mathbb{1}_{M = m}$$

 \Rightarrow One model per pattern (2^{*d*}) (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent for prediction

$$ilde{X} = X \odot (1 - M) + \mathtt{NA} \odot M$$
. New feature space is $\mathbb{\widehat{R}}^d = (\mathbb{R} \cup \{\mathtt{NA}\})^d$

$$Y = \begin{pmatrix} 4.6\\ 7.9\\ 8.3\\ 4.6 \end{pmatrix} \quad \tilde{X} = \begin{pmatrix} 9.1 & \text{NA} & 1\\ 2.1 & \text{NA} & 3\\ \text{NA} & 9.6 & 2\\ \text{NA} & 5.5 & 6 \end{pmatrix} \quad X = \begin{pmatrix} 9.1 & 8.5 & 1\\ 2.1 & 3.5 & 3\\ 6.7 & 9.6 & 2\\ 4.2 & 5.5 & 6 \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

Find a prediction function that minimizes the expected risk.

Bayes rule:
$$f^* \in \underset{f: \widetilde{\mathbb{R}}^d \to \mathbb{R}}{\arg \min} \mathbb{E}\left[\left(Y - f(\widetilde{X})\right)^2\right]$$

$$f^{*}(\tilde{X}) = \mathbb{E}\left[Y \mid \tilde{X}\right] = \mathbb{E}\left[Y \mid X_{obs(M),M}\right]$$
$$= \sum_{m \in \{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m\right] \mathbb{1}_{M = m}$$

 \Rightarrow One model per pattern (2^{*d*}) (Rubin, 1984, generalized propensity score)

Framework - assumptions

- $Y = f(X) + \varepsilon$
- $X = (X_1, \dots, X_d)$ has a continuous density g > 0 on $[0, 1]^d$
- $\|f\|_{\infty} < \infty$
- Missing data MAR on X_1 with $M_1 \perp X_1 | X_2, \ldots, X_d$.
- $(x_2, \ldots, x_d) \mapsto \mathbb{P}[M_1 = 1 | X_2 = x_2, \ldots, X_d = x_d]$ is continuous
- ε is a centered noise independent of (X, M_1)

(remains valid when missing values occur for several variables X_1, \ldots, X_j)

Constant (mean) imputation is consistent

Constant imputed entry $x' = (x'_1, x_2, ..., x_d)$: $x'_1 = x_1 \mathbb{1}_{M_1=0} + \alpha \mathbb{1}_{M_1=1}$ **Theorem. (J. et al. 2019)** $f^*_{impute}(x') = \mathbb{E}[Y|X_2 = x_2, ..., X_d = x_d, M_1 = 1]$ $\mathbb{1}_{x'_1=\alpha} \mathbb{1}_{\mathbb{P}[M_1=1|X_2=x_2,...,X_d=x_d]>0}$ $+ \mathbb{E}[Y|X = x'] \mathbb{1}_{x'_1=\alpha} \mathbb{1}_{\mathbb{P}[M_1=1|X_2=x_2,...,X_d=x_d]=0}$ $+ \mathbb{E}[Y|X_1 = x_1, X_2 = x_2, ..., X_d = x_d, M_1 = 0] \mathbb{1}_{x'_1\neq\alpha}.$

Prediction with mean is equal to the Bayes function almost everywhere

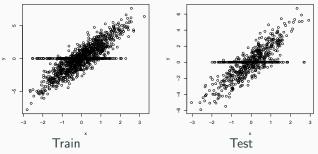
$$f^{\star}_{impute}(X') = f^{\star}(\tilde{X}) = \mathbb{E}[Y| ilde{X} = ilde{x}]$$

Rq: pointwise equality if using a constant out of range.

 \Rightarrow Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the **learning algorithm is universally consistent**

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:
- Need a lot of data (asymptotic result) and a super powerful learner

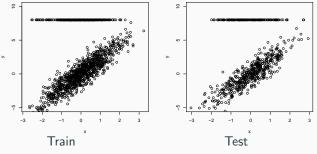


Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range
- Need a lot of data (asymptotic result) and a super powerful learner



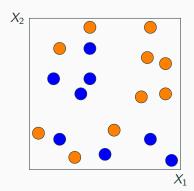
Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimize the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{arg\,min}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

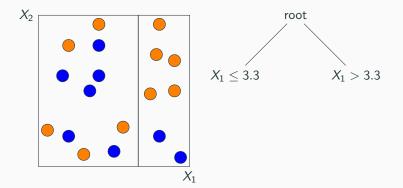


root

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimize the (quadratic) loss

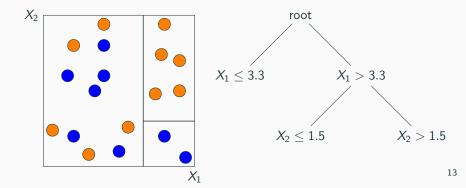
$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{arg\,min}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z} \Big].$$



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^* , the threshold z^* which minimize the (quadratic) loss

$$(j^{\star}, z^{\star}) \in \underset{(j,z)\in\mathcal{S}}{\operatorname{arg\,min}} \mathbb{E}\Big[\left(Y - \mathbb{E}[Y|X_j \leq z]\right)^2 \cdot \mathbb{1}_{X_j \leq z} + \left(Y - \mathbb{E}[Y|X_j > z]\right)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

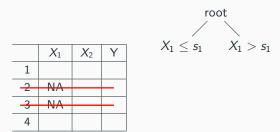


CART with missing values

root

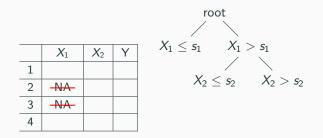
	X_1	<i>X</i> ₂	Υ
1			
2	NA		
3	NA		
4			

CART with missing values



1) Select variable and threshold on observed values (1 & 4 for X_1) $\mathbb{E}\Big[(Y - \mathbb{E}[Y|X_j \le z, M_j = 0])^2 \cdot \mathbb{1}_{X_j \le z, M_j = 0} + (Y - \mathbb{E}[Y|X_j > z, M_j = 0])^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\Big].$

CART with missing values



1) Select variable and threshold on observed values (1 & 4 for X_1) $\mathbb{E}\Big[(Y - \mathbb{E}[Y|X_j \le z, M_j = 0])^2 \cdot \mathbb{1}_{X_j \le z, M_j = 0} + (Y - \mathbb{E}[Y|X_j > z, M_j = 0])^2 \cdot \mathbb{1}_{X_j > z, M_j = 0}\Big].$

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: $Bernoulli(\frac{\#L}{\#L+\#R})$ (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)

• Surrogate split: Search another variable that gives a close partition (rpart)

One step: select the variable, the threshold and propagate missing values

1.
$$\{\widetilde{X}_j \leq z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A}\} \text{ vs } \{\widetilde{X}_j > z\}$$

2. $\{\widetilde{X}_j \leq z\} \text{ vs } \{\widetilde{X}_j > z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A}\}$
3. $\{\widetilde{X}_i \neq \mathbb{N}\mathbb{A}\} \text{ vs } \{\widetilde{X}_i = \mathbb{N}\mathbb{A}\}.$

- The splitting location z depends on the missing values
- Missing values treated like a category (well to handle $\mathbb{R} \cup NA$)
- Good for informative pattern (*M* explains *Y*)

Targets one model per pattern:

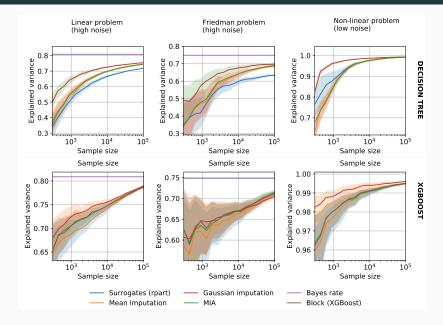
$$\mathbb{E}\left[Y\Big|\tilde{X}\right] = \sum_{m \in \{0,1\}^d} \mathbb{E}\left[Y|X_{obs(m)}, M = m\right] \mathbb{1}_{M=m}$$

• Implementation ³: grf package, scikit-learn, partykit

 \Rightarrow Extremely **good performances** in practice **for any mechanism**.

 $^{^3}$ implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace the missing entries once by $+\infty$ and once by $-\infty$

Consistency: 40% missing values MCAR



Linear regression with missing values (using MLP)

Linear model with missing values

Linear model:

$$Y = \beta_0 + \langle X, \beta \rangle + \varepsilon, \quad X \in \mathbb{R}^d, \ \varepsilon \text{ gaussian}.$$

Existing solutions

- ML with EM algo. (available implementation struggles for large d)
- Multiple imputation (few aggregation strategies for predictive models) \Rightarrow Mainly to estimate parameters in Missing At Random setting

Aim: Predict Y (out of sample) with any missing value mechanism $\tilde{X} = X \odot (1 - M) + \text{NA} \odot M$. New feature space is $\tilde{\mathbb{R}}^d = (\mathbb{R} \cup \{\text{NA}\})^d$.

Bayes rule:
$$f^* \in \underset{f: \widetilde{\mathbb{R}}^d \to \mathbb{R}}{\arg \min} \mathbb{E}\left[\left(Y - f(\widetilde{X})\right)^2\right]$$

$$f^*(ilde{X}) = \mathbb{E}\left[Y \mid ilde{X}
ight] = \sum_{m \in \{0,1\}^d} \mathbb{E}\left[Y \mid X_{obs(m)}, M = m
ight] \ \mathbb{1}_{M=m}$$

 \Rightarrow One model per pattern (2^d) (Rubin, 1984, generalized propensity score) 17

Example

Let $Y = X_1 + X_2 + \varepsilon$, where $X_2 = \exp(X_1) + \varepsilon_1$. Now, assume that only X_1 is observed. Then, the model can be rewritten as

$$Y = X_1 + \exp(X_1) + \varepsilon + \varepsilon_1,$$

where $f(X_1) = X_1 + \exp(X_1)$ is the Bayes predictor. In this example, the submodel for which only X_1 is observed is not linear.

 \Rightarrow There exists a large variety of submodels for a same linear model. Depend on the structure of X and on the missing-value mechanism.

Explicit Bayes predictor with missing values

Linear model:

$$Y = \beta_0 + \langle X, \beta \rangle + \varepsilon, \quad X \in \mathbb{R}^d, \ \varepsilon \text{ gaussian}.$$

Bayes predictor for the linear model:

$$f^{\star}(\tilde{X}) = \mathbb{E}[Y|\tilde{X}] = \mathbb{E}[\beta_0 + \beta^{\mathsf{T}}X \mid M, X_{obs(M)}]$$

= $\beta_0 + \beta_{obs(M)}^{\mathsf{T}}X_{obs(M)} + \beta_{mis(M)}^{\mathsf{T}} \mathbb{E}[X_{mis(M)} \mid M, X_{obs(M)}]$

Assumptions on covariates and missing values

- 1. Gaussian pattern mixture model, PMM: $X \mid (M = m) \sim \mathcal{N}(\mu_m, \Sigma_m)$
- 2. Gaussian assumption $X \sim \mathcal{N}(\mu, \Sigma) + MCAR$ and MAR
- 3. (Also for Gaussian assumption + MNAR self mask gaussian)

Under Assump. the Bayes predictor is linear per pattern

$$f^{\star}(X_{obs}, M) = \beta_{0}^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

use of obs instead of obs(M) for lighter notations - Expression for 2.

Expanded Bayes predictor

Under GPMM, bayes predictor is linear per pattern \Leftrightarrow linear model in W $f^*(\tilde{X}) = \langle W, \delta \rangle$

W an expansion (2^d blocks) & parameters $\delta \in \mathbb{R}^d$ function of β, μ_m, Σ_m

	(1	<i>x</i> _{1,1}	$x_{1,2}$ \	l l	$\begin{pmatrix} 1 \end{pmatrix}$	<i>x</i> _{1,1}	<i>x</i> _{1,2}	0	0	0	0	0 \
$ ilde{X} =$	1	<i>x</i> _{2,1}	<i>x</i> _{2,2}		1	<i>x</i> _{2,1}	<i>x</i> _{2,2}	0	0	0	0	0
	1	<i>x</i> _{3,1}	NA	W =	0	0	0	1	x _{3,1}	0	0	0
	1	<i>x</i> _{4,1}	NA		0	0	0	1	<i>x</i> _{4,1}	0	0	0
	1	NA	<i>x</i> _{5,2}		0	0	0	0	0	1	<i>x</i> _{5,2}	0
	1	NA	<i>x</i> _{6,2}		0	0	0	0	0	1	<i>x</i> _{6,2}	0
	1	NA	NA		0	0	0	0	0	0	0	1
	$\setminus 1$	NA	NA /	/	0 /	0	0	0	0	0	0	1 /

 $W = (\mathbbm{1}_{M=(0,0)}, X_1 \mathbbm{1}_{M=(0,0)}, X_2 \mathbbm{1}_{M=(0,0)}, \mathbbm{1}_{M=(0,1)}, X_1 \mathbbm{1}_{M=(0,1)}, \mathbbm{1}_{M=(1,0)}, X_2 \mathbbm{1}_{M=(1,0)}, \mathbbm{1}_{M=(1,1)}).$

Expanded Bayes predictor

Under GPMM, bayes predictor is linear per pattern \Leftrightarrow linear model in W $f^*(ilde X)=\langle W,\delta
angle$

W an expansion (2^d blocks) & parameters $\delta \in \mathbb{R}^d$ function of β, μ_m, Σ_m

	(1	<i>x</i> _{1,1}	<i>x</i> _{1,2} \	l l	$\begin{pmatrix} 1 \end{pmatrix}$	<i>x</i> _{1,1}	<i>x</i> _{1,2}	0	0	0	0	0 \
$\tilde{X} =$	1	<i>x</i> _{2,1}	<i>x</i> _{2,2}		1	<i>x</i> _{2,1}	<i>x</i> _{2,2}	0	0	0	0	0
	1	<i>x</i> _{3,1}	NA		0	0	0	1	<i>x</i> _{3,1}	0	0	0
	1	<i>x</i> _{4,1}	NA	W =	0	0	0	1	<i>x</i> _{4,1}	0	0	0
	1	NA	<i>x</i> _{5,2}		0	0	0	0	0	1	<i>x</i> _{5,2}	0
	1	NA	<i>x</i> _{6,2}		0	0	0	0	0	1	<i>x</i> _{6,2}	0
	1	NA	NA		0	0	0	0	0	0	0	1
	$\begin{pmatrix} 1 \end{pmatrix}$	NA	NA /	/	0 /	0	0	0	0	0	0	1 /

 $W = (\mathbb{1}_{M = (0,0)}, X_1 \mathbb{1}_{M = (0,0)}, X_2 \mathbb{1}_{M = (0,0)}, \mathbb{1}_{M = (0,1)}, X_1 \mathbb{1}_{M = (0,1)}, \mathbb{1}_{M = (1,0)}, X_2 \mathbb{1}_{M = (1,0)}, \mathbb{1}_{M = (1,1)}).$

Problem: Dim of W is
$$p = \sum_{k=0}^{d} \binom{d}{k} \times (k+1) = 2^{d-1} \times (d+2).$$

Need to approximate it: Linear + MLP approximation + Neumiss

20

Linear Approximation

The Bayes predictor can be expressed as a polynome of X and M, which can be truncated to a lower-dimensional approximation.

$$f^{\star}_{\mathrm{approx}}(\tilde{X}) = eta^{\star}_{0,0} + \sum_{j=1}^d eta^{\star}_{j,0} M_j + \sum_{j=1}^d eta^{\star}_j X_j(1-M_j).$$

1	1	$X_1 \odot (1 - M_1)$	$X_2 \odot (1 - M_2)$	<i>M</i> ₁	M_2
[1	x _{1,1}	x _{1,2}	0	0
	1	x _{2,1}	x _{2,2}	0	0
1	1	X3,1	0	0	1
	1	x _{4,1}	0	0	1
-	1	0	X5,2	1	0
	1	0	×5,2 ×6,2	1	0
	1	0	0	1	1
(1	0	0	1	1 /

Imputing X by 0 and concatenate M

Impute X by 0 and concatenate $M \Leftrightarrow$ optimize an imputation constant.

Indeed,

$$\beta_j \{X_j(1-M_j)+c_jM_j\} = \beta_j X_j(1-M_j)+\{\beta_j c_j\} M_j.$$

Expanded model VS Linear approximation

expanded								linear approximation						
1	1	×1,1	×1,2	0	0	0	0	0)	\	(1	×1,1	×1,2	0	0)
	1	×2,1	×2,2	0	0	0	0	0		1	×2,1	×2,2	0	0
	0	0	0	1	×3,1	0	0	0		1	×3,1	0	0	1
	0	0	0	1	×4,1	0	0	0	vs	1	×4,1	0	0	1
	0	0	0	0	0	1	×5,2	0		1	0	×5.2	1	0
	0	0	0	0	0	1	×6,2	0		1	0	×6,2	1	0
	0	0	0	0	0	0	0	1		1	0	0	1	1
(0	0	0	0	0	0	0	1 /		$\begin{pmatrix} 1 \end{pmatrix}$	0	0	1	1 /

Two estimations strategies:

• Linear reg. to estimate the expanded bayes predictor: rich model, powerful in low dimension. Costly, large variance in high dimension

• Linear approximation: lower approximation capacity smaller variance since it contains fewer parameters

Finite sample bounds - Excess of risk

- Expanded: $\mathcal{O}\left(\frac{2^d}{n}\right)$
- Linear approximation: $\mathcal{O}\left(d^2 + \frac{d}{n}\right)$

Comparing the upper bounds: Risk of expanded is lower than risk of approximation when $n >> \frac{2^d}{d}$

Bayes consistency of the MLP

Theorem. Bayes consistency of a MLP. Le Morvan et al. (2020)

Under linear model + Gaussian pattern mixture model, a MLP:

- with one hidden layer containing 2^d hidden units
- ReLU activation functions

fed with [X ⊙ (1 − M), M] (X̃ imputed by 0 concatenated with mask)
 can achieve the Bayes rate.

Rationale: The MLP produces a prediction function piecewise affine. Since the Bayes predictor is linear per pattern, MLP good candidate.

We show that there exists a configuration of the parameters of the MLP so that the resulting predictor is the Bayes predictor.

Number of parameters: $(d + 1)2^{d+1} + 1$.

 \Rightarrow Provides a natural way to reduce the model capacity by reducing the number of hidden units. (Trading off estimation and approximation error)

The Bayes predictor is linear per pattern (Gaussian+ M(C)AR) $f^{*}(X_{obs}, M) = \beta_{0}^{*} + \langle \beta_{obs}^{*}, X_{obs} \rangle + \langle \beta_{mis}^{*}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$

Order- ℓ approx of $(\Sigma_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

Order- ℓ approx of the Bayes predictor in MAR

 $f_{\ell}^{\star}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \sum_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$

Order- ℓ approx of $(\Sigma^{-1}_{\textit{obs}(m)})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

Proposition (Risk of the Order- ℓ approx)

Let ν be the smallest eigenvalue of Σ . Assume linear model with Gaussian covariates, M(C)AR, and that the spectral radius of Σ is < 1. Then, for all $\ell \geq 1$,

$$\mathbb{E}\Big[\big(f_{\ell}^{\star}(X_{obs},M) - f^{\star}(X_{obs},M)\big)^{2}\Big] \leq \frac{(1-\nu)^{2\ell} \|\beta^{\star}\|_{2}^{2}}{\nu} \mathbb{E}\Big[\big\|Id - S^{(0)}_{obs(M)} \Sigma_{obs(M)}\big\|_{2}^{2}\Big]$$

The error of the order- ℓ approximation decays exponentially fast with ℓ .

Order- ℓ approx of the Bayes predictor in MAR

$$f_{\ell}^{\star}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \Sigma_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$$

Order- ℓ approx of $(\Sigma_{obs(m)}^{-1})$ for any m defined recursively:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$$

Neuman Series, $S^{(0)} = Id$, $\ell = \infty$: $(\Sigma_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \Sigma_{obs(m)})^k$

\Rightarrow Neural network architecture to approximate the Bayes predictor

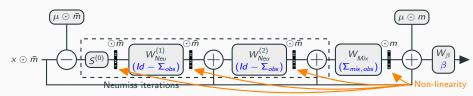


Figure 1: Depth of 3, $\bar{m} = 1 - m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

26

Order- ℓ approx of the Bayes predictor in MAR $f_{\ell}^{*}(X_{obs}, M) = \langle \beta_{obs}, X_{obs} \rangle + \langle \beta_{mis}, \mu_{mis} + \sum_{mis,obs} S_{obs(m)}^{(\ell)}(X_{obs} - \mu_{obs}) \rangle.$ Order- ℓ approx of $(\sum_{obs(m)}^{-1})$ for any m defined recursively: $S_{obs(m)}^{(\ell)} = (Id - \sum_{obs(m)})S_{obs(m)}^{(\ell-1)} + Id.$ Neuman Series, $S^{(0)} = Id, \ \ell = \infty$: $(\sum_{obs(m)})^{-1} = \sum_{k=0}^{\infty} (Id - \sum_{obs(m)})^{k}$

\Rightarrow Neural network architecture to approximate the Bayes predictor

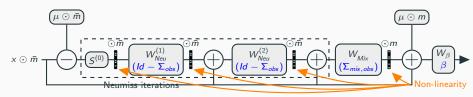
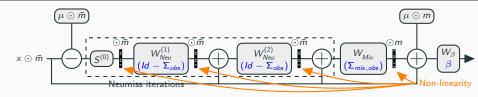


Figure 1: Depth of 3, $\bar{m} = 1 - m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

26

Networks with missing values: $\odot M$ nonlinearity

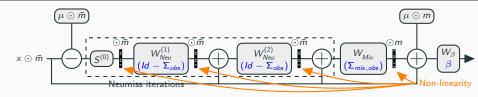


• Implementing a network with the matrix weights $W^{(k)} = (I - \Sigma_{obs(m)})$ masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector. Let v a vector, $\overline{m} = 1 - m$. $(W \odot \overline{m} \overline{m}^{\top})v = (W(v \odot \overline{m})) \odot \overline{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Networks with missing values: $\odot M$ nonlinearity



• Implementing a network with the matrix weights $W^{(k)} = (I - \Sigma_{obs(m)})$ masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector. Let v a vector, $\overline{m} = 1 - m$. $(W \odot \overline{m} \overline{m}^{\top})v = (W(v \odot \overline{m})) \odot \overline{m}$

Classic network with multiplications by the mask nonlinearities $\odot M$

Proposition (equivalence MLP - depth-0 Neumiss network) A MLP with ReLU activations, one hidden layer of d hidden units, and which operates on the $[X \odot (1 - M), M]$, the input X imputed by 0 concatenated with the mask M, is equivalent to the 0-depth NN

Experiments for linear regression with missing values

- $Y = X\beta^* + \varepsilon$, ε chosen such as SNR = 10.
- $X \sim \mathcal{N}(\mu, \Sigma)$
- $\Sigma = UU^{\top} + \operatorname{diag}(\epsilon'), \ U \in \mathbb{R}^{d \times \frac{d}{2}}, \ U_i j \sim \mathcal{N}(0, 1) \ \epsilon' \sim \mathcal{U}(10^{-2}, 10^{-1})$
- 50% of MCAR, MAR, Probit self-masking.
- Max Likelihood: to estimate the parameters of the joint Gaussian distribution (X₁, ..., X_d, Y) with EM. Predict by conditional expectation of Y given X_{obs}.
- ICE + LR: conditional imputation with an iterative imputer followed by linear regression.
- MLP: take as input the data imputed by 0 concatenated with the mask [X ⊙ (1 − M), M] with ReLU nonlinearity,
 - MLP-Wide: one hidden layer with width increased (between d & 2^d)
 - MLP-Deep: 1 to 10 hidden layers of d hidden units
- Neumiss: The Neumiss architecture with the ⊙*M*, choosing the depth on a validation set.

Results

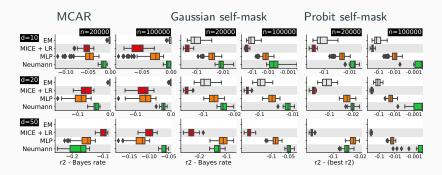


Figure 2: Predictive performances in various scenarios — varying missing-value mechanisms, number of samples *n*, and number of features *d*.

 \Rightarrow Best performances for MNAR scenario (50% of NA on all variables)

• More effective to increase the capacity of the Neumiss network (depth) than to increase the capacity (width) of MLP Wide.

Discussion - challenges

Supervised learning different from usual inferential probabilistic models. Solutions useful in practice robust to the missing-value mechanisms but needs powerful model.

Powerful learner with missing values

- \bullet Incomplete train and test \rightarrow same imputation model
- Single constant imputation is consistent with a powerful learner
- Tree-based models : Missing Incorporated in Attribute
- To be done: nonasymptotic results, uncertainty, distributional shift: No NA in the test? Proofs in MNAR

Linear regression with missing values

- The Bayes predictor is explicit under Gaussian assumptions/ MAR and gaussian self mask but high-dimensional.
- Approx include MLP which can be consistent and Neumiss Network
- New architecture for network with missing data: $\odot M$ nonlinearity.

<u>**R-miss-tastic**</u> https://rmisstastic.netlify.com/R-miss-tastic

- J., I. Mayer, N. Tierney & N. Vialaneix
- Project funded by the R consortium (Infrastructure Steering Committee)⁴

Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
- \Rightarrow Federate the community

 \Rightarrow Contribute!

⁴https://www.r-consortium.org/projects/call-for-proposals

Examples:

- Lecture ⁵ General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- Lecture Multiple Imputation: mice by Nicole Erler ⁶
- Longitudinal data, Time Series Imputation (<u>Steffen Moritz</u> very active contributor of r-miss-tastic), Principal Component Methods⁷

multipleimputation_2018/erler_practical_mice_2018

⁵https://rmisstastic.netlify.com/lectures/

⁶https://rmisstastic.netlify.com/tutorials/erler_course_

⁷https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf