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RANDOMIZED CONTROLLED TRIALS AND META-ANALYSIS

Goal of causal inference: measure the effect of a treatment on an outcome

Randomized Controlled Trials (RCTs) are the
gold standard but limited scope (stringent
eligibility criteria, limited sample size...)

Treated Control

Meta-analysis (aggregating estimated effects
from multiple studies) is at the top of the
pyramid of evidence
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GOING BEYOND META-ANALYSIS WITH FEDERATED CAUSAL INFERENCE

• Meta-analyses still face significant challenges:
• Data heterogeneity across studies (sample sizes, populations, center effects...)
• Difficulty to share individual-level data due to data silos and personal data regulations

• Our work bridges causal inference and federated learning [Kairouz et al., 2021] to
better estimate average treatment effects from decentralized data sources
1. We consider several estimators with varying communication costs

2. We study their statistical performance under various types of data heterogeneity

3. We validate on numerical simulations and provide guidelines for practitioners
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RELATED WORK IN FEDERATED CAUSAL INFERENCE

• [Xiong et al., 2023] propose to use one-shot aggregation to federate the outcome or
propensity score model, but it is unclear when these estimators should be preferred
to other methods (e.g., traditional meta-analysis)

• [Vo et al., 2022b] employ a Bayesian framework using Gaussian processes but is
restricted to uniform data distributions across sources

• [Vo et al., 2022a, Han et al., 2021, Han et al., 2023, Makhija et al., 2024, Guo et al., 2024] focus on
transferring causal estimates from one source to another, while our work aims to
estimate causal effects across the joint population
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PROBLEM SETTING



REMINDER: CLASSIC RCT FRAMEWORK

• Estimate effect of treatment W on outcome Y given covariates X, with Wi ∼ B(p)

• Average Treatment Effect (ATE) measured as a risk difference τ = E[Yi(1)− Yi(0)]

Obs. Covariates Treatment Outcome Potential Outcomes

i X1 X2 X3 W Y Y(1) Y(0)

1 2.3 1.5 M 1 3.2 3.2 ??
2 2.2 3.1 F 0 2.8 ?? 2.8
3 3.5 2.0 F 1 2.1 2.1 ??
...

...
...

...
...

...
...

...
n− 1 3.7 2.0 F 0 2.8 ?? 2.8
n 2.5 1.7 M 1 3.2 3.2 ??
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OUR SETTING: DECENTRALIZED HETEROGENEOUS RCTS

• We consider K decentralized and potentially heterogeneous RCTs (studies) from
different sources and want to estimate the ATE given by τ = E

(
E(Y(1) − Y(0) | H)

)
Source Obs. Covariates Treatment Outcomes

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2
1 2 2.2 3.1 F 0 2.8
...

...
...

...
...

...
...

2 1 4.5 5.0 F 1 4.1
...

...
...

...
...

...
...

K 1 3.7 2.0 F 0 2.8
...

...
...

...
...

...
...

K nK 2.5 1.7 M 0 3.2

hehr
in

W

X

Y

H

How to estimate τ without pooling together individual-level data?
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MODEL AND ASSUMPTIONS

• For now, same linear outcome model for all studies:

∀k : Y(w)k,i = c(w) + Xk,iβ(w) + ε
(w)
k,i , with E

[
X⊤k ε

(w)
k,i

]
= 0,V

(
ε
(w)
k,i | Xk

)
= σ2

• Standard assumptions (consistency, positivity, unconfoundedness)

• Ideal baseline: estimator τ̂pool =
1
n
∑n

i=1 X′i(θ̂
(1)
pool − θ̂

(0)
pool) on pooled data, where

θ̂
(w)
pool = (ĉ(w)pool, β̂

(w)
pool) =

(
X′(w)

⊤
X′(w)

)−1X′(w)
⊤
Y(w) is the OLS estimator and X′(w) = [1, X(w)]

• τ̂pool always has lower variance than the simple difference-in-means estimator
[Benkeser et al., 2021, Lei and Ding, 2021]
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FEDERATED ESTIMATORS



THREE TYPES OF FEDERATED ESTIMATORS

Meta analysis

• Meta and one-shot require local sample size n(w)
k ≥ d for k,w

• Aggregation: sample size weights (SW) or inverse variance weights (IVW)
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COMPARISON OF THE ESTIMATORS

HOMOGENEOUS SETTING



HOMOGENEOUS SETTING

W

X

YH

• The source membership variable H only affects the treatment allocation scheme

• Let Wk,i ∼ B(pk)
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SUMMARY OF RESULTS

Estimators are unbiased but differ by their asymptotic variance and communication costs:

Estimator Notation V∞ Com. rounds Com. cost

Meta-SW τ̂Meta-SW σ2
n

K∑
k=1

ρk

pk(1 − pk)
+

1
n
∥β(1)−β

(0)∥2
Σ 1 O(1)

Meta-IVW τ̂Meta-IVW
( K∑

k=1

(
σ

2 nρk
pk(1 − pk)

+
1
nk

∥β(1)−β
(0)∥2

Σ

)−1
)−1 1 O(1)

1S-SW τ̂1S-SW Vpool 2 O(d)

1S-IVW τ̂1S-IVW Vpool 2 O(d2)

GD τ̂GD Vpool T+ 1 O(Td)

Pool τ̂pool Vpool =
σ2

n
1

p(1−p) +
1
n∥β

(1) − β(0)∥2Σ — —

with ρk = P(H = k) = E
[nk
n
]
and p =

∑K
k=1

nk
n pk

9



NUMERICAL ILLUSTRATION (K = 5 AND d = 10)

More data (nk = 100d)

Less data (nk = 5d)

p1 = p2 = p3 = 0.9, p4 = p5 = 0.1

p1 = p2 = p3 = 0.65, p4 = p5 = 0.35

total_data
Client

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

E
st

im
at

io
n

g_formula for RCT, P(Wk, i X), large setting

total_data
Client

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

E
st

im
at

io
n

g_formula for RCT, pk, small setting

pool meta_SW meta_IVW 1S_IVW 1S_SW GD True Tau
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COMPARISON OF THE ESTIMATORS

HETEROGENEOUS DISTRIBUTIONS



HETEROGENEITY IN COVARIATES DISTRIBUTIONS

W

X

Y

H

• Distributional shift across sources: H ̸⊥⊥ X =⇒ τk ̸= τk′

• Global ATE is given by τ =
∑K

k=1 ρkτk with ρk = P(H = k) = E
[nk
n
]

11

Julie Josse



SUMMARY OF RESULTS

• τ̂meta−IVW is biased because inverse variance weights give biased estimates of the ρk

• V∞(τ̂pool)=V∞(τ̂GD)=V∞(τ̂1S−IVW)≤V∞(τ̂meta−SW)

• τ̂1S−SW is robust to heterogeneous covariances {Σk}k but has larger variance for
different means {µk}k
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NUMERICAL ILLUSTRATION

Xk ∼ N (µk,Σk)

More data (nk = 100d) Less data (nk = 5d)

total_data
Client

1.0

0.5

0.0

0.5

1.0

1.5

2.0

E
st

im
at

io
n

g_formula for RCT, ( k, k), large setting

total_data
Client

1.0

0.5

0.0

0.5

1.0

1.5

2.0

E
st

im
at

io
n

g_formula for RCT, ( k, k), small setting

pool meta_SW meta_IVW 1S_IVW 1S_SW GD True Tau

13



COMPARISON OF THE ESTIMATORS

PRESENCE OF CENTER EFFECTS



HETEROGENEITY FROM CENTER EFFECTS

W

X

Y
H

• Studies may have different baselines in individual outcomes due to varying practices
or organizational contexts (e.g. hospital specialized in oncology)

• We model this by a fixed effect of the source H onto the outcome Y:

Y(w)k,i = c(w) + hk + Xk,iβ(w) + εi(w)

(Note: the CATEs E[Y(1)− Y(0)|X,H] remain the same across sources)

• Caution: H is now a confounder!
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SUMMARY OF RESULTS

• τ̂meta−SW and τ̂meta−IVW naturally account for the center effects

• Other federated estimators are biased and need to be adjusted

• One-shot estimators: share and aggregate only the covariates coefficients β̂k, while
keeping intercepts local

• GD estimators: add H as an additional covariate
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NUMERICAL ILLUSTRATION

More data (nk = 100d) Less data (nk = 5d)
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NUMERICAL ILLUSTRATION

More data (nk = 100d) Less data (nk = 5d)

1S-SWPool Meta-SW GD1S-IVWMeta-IVW Adjusted True tau
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CONCLUSION & PERSPECTIVES



SUMMARY: DECISION DIAGRAM FOR PRACTITIONERS
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SOME PERSPECTIVES

• Extend to observational studies (e.g., federated IPW and AIPW) and nonlinear models

• Handle covariate mismatch across sources

• Consider non-collapsible causal measures (e.g., odds ratio)

• Provide robust privacy guarantees (differential privacy)

18



THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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FULL HETEROGENEITY - NUMERICAL ILLUSTRATION
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