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I conduct research in statistical methodology and computational statics. My research practice
consists of a balance between theory and applications, with multidisciplinary projects at the heart
of my work. To conduct innovative research, I strongly believe in the contributions of different
cultures both within and across disciplines. Hence, I nurture many national and international
collaborations. I detail below my main research topics: 1) The challenge of handling missing data
which is ubiquitous in statistical methods, machine learning and application domains; 2) Causality
with multi-sources data, which offers new opportunities to better understand many processes but
come with many open problems requiring statistical and computational breakthroughs and 3)
low-rank matrix approximation and multi-view data analysis.

1 Missing data

The problem of missing values exists since the earliest attempts of exploiting data as a source of
knowledge as it lies intrinsically in the process of collecting, recording, and preparing the data
itself. It is all the more unavoidable as vast amounts of data are currently collected from different
sources'. The literature on the subject is therefore abundant [14] and in a recent survey, we

reviewed more than 150 implementations available to handle missing data [17].

Most methods have been developed for inferential purposes i.e., to estimate parameters and
their variance in the presence of missing values. When the inference is carried out by maximum
likelihood, one can resort to Expectation-Maximization (EM) algorithms to get point esti-
mates. However, the expectation steps are often intractable and few implementations are available.
For example, no such solution existed for logistic regression with missing data, before we derived
a stochastic EM approximation (SAEM) algorithm [9], implemented in an R package. Variables
selection with missing values is also under-explored, so we proposed Adaptive Bayesian SLOPE
(jointly w. G. Bogdan) which controls the false discovery rate.

The major drawback of these methods is that a new algorithm has to be rederived for each sta-
tistical method. (Single) imputation techniques which consist of replacing missing values with
plausible values, are very appealing as they allow to both get a guess for the missing entries as
well as to perform downstream statistical methods on the completed data. Iterative singular value
decomposition methods that I developed (linked to matrix completion) were proven excellent to
handle high dimensional heterogeneous data (categorical, quantitative, etc.) [1] and data with a
multi-level structure [8] (jointly w. B. Narasimhan). In addition, there is a duality between es-
timation and imputation and these techniques also allow for methods such as Principal Component
Analyses (PCA) in the presence of missing data (implemented in [12]). To tackle shortcomings
of existing techniques, I have also suggested non-parametric imputation methods, either based on
optimal transport (jointly w. M. Cuturi) to preserve the data distribution [22], or on statistical
depth [21] to ensure robustness to both outliers and heavy-tailed distribution (post-doctorate
supervision: P. Mozharovsky).

Multiple imputation reflects the uncertainty associated with the prediction of missing entries
and thus leads to confidence intervals with good coverage properties incorporating the additional
variability due to missing values. To tackle high dimensional settings, and categorical data with
rare categories, I have developed such methods based on PCA [2].

Theory and practice mostly rely on the Missing At Random (MAR) assumption: the proba-
bility of being missing only depends on observed values. Solutions are limited (to a single variable
with missing data or linear models) for Missing Not At Random settings which are however
omnipresent in practice. After showing identifiability, we have proposed solutions for estimating
parameters of low-rank models [23, 24] (jointly w. C. Boyer) either by modeling the missing-
values mechanism or using missingness graph. We are currently investigating extensions to mixture
models. Open challenges include handling different types of missing values mechanisms within a
dataset or distributional shifts in the missing values mechanism.

Finally, with G. Varoquaux and E. Scornet, we have obtained the first theoretical results
on supervised learning with missing data. Our motivation was to predict an outcome given
incomplete covariates. We have shown Bayes consistency of impute and regress strategies [19]
for all missing values mechanisms. It implies that the widespread mean imputation is consistent
for prediction [13] despite its drawbacks for estimation (distribution distortion). I expect these
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contributions to have a strong impact in many fields because the proposed solutions are easy to
implement for the end users. However, the results are asymptotic and there is a need for refined
finite sample guidance. We have also studied solutions for random forests and developed the
first theoretically justified neural networks architecture [20, 16] with missing entries. These
works have repercussions in the field of causal inference as it allows to estimate a treatment effect,
for example with double robust methods and missing data in the confounders [18] (jointly w.
S. Wager). To know what confidence could be given to the predictions obtained from initially
incomplete data, we have suggested with Y. Romano, conformal prediction [26] with missing
data and have obtained coverage guarantees conditional on the missing data pattern.

2 Causal inference for multi-sources data

Launching a drug without randomized control trials? Modern evidence-based medicine puts Ran-
domized Controlled Trial (RCT) at the core of clinical evidence. In practice, almost all new drugs
are authorized through such trials (after a pre-clinical study). Indeed, randomization enables to
estimate the Average Treatment Effect by avoiding confounding effects of spurious or undesirable
associated factors. In other words, RCTs are the current gold-standard to empirically measure a
causal effect of a given intervention on an outcome. But more recently, concerns have been raised
on the limited scope of RCTs: stringent eligibility criteria, unrealistic real-world compliance, short
timeframe, limited sample size, etc. Such limitations threaten the external validity of RCT studies
to other situations or populations. The usage of complementary non-randomized data, referred
to as observational or from real world, brings promises as additional sources of evidence, in par-
ticular combined to trials. Transportability (also known as generalization, recoverability from
sampling bias, or data-fusion) allows to generalize or transport the trial findings toward a target
population of interest, potentially subject to a covariate distributional shift, see a review in [7].

RCT and observational data are seldom acquired as part of a homogeneous effort. As a result,
they come with different covariates. Restricting the analysis to the shared covariates raises the
risk of omitting an important one leading to identifiabilities issues. This problem is reminiscent
of unobserved confounding in causal inference with one observational data. In [4], we suggest a
sensitivity analysis to handle cases where such covariates (namely treatment effect modifiers
that are shifted between the two sets when studying risk difference) are missing in one or both
sets. We also completed proofs on the consistency of generalization estimators that use either
weighting (Inverse Propensity of Sampling Weighting, IPSW), outcome modeling , or
combine the two in doubly robust approaches with Augmented IPSW (AIPSW).

We further analysed the IPSW estimator, which consists of re-weighting the trial so that it
resembles the observational sample, in [5]. In particular, we established finite sample bias
and variance (the literature mostly focuses on asymptotic results) and upper bound on the
risk of different versions of the estimator: oracle, semi-oracle, etc. This work can lead to practical
recommendations in terms of data collection (e.g., doubling the size of the observational data leads
to a smaller asymptotic variance than doubling the size of the trial). In addition, we studied the
impact of the choice of variables: how including covariates that are not necessary for identifiability

of the causal effect may impact the asymptotic variance.

There exists no estimators to generalize other measures than the risk difference such as the
risk ratio, survival ratio, number needed to treat, odds ratio etc, no theoritical guaranteed on
their behavior and no assessment of their empirical behavior. Such causal measures are however
dominant in the medical literature and more appropriate for binary outcome for instance. In [6],
we highlight that some measure are easier than other to generalize as they require few variables
(for instance only treatment effect modifiers and not both modifiers and prognostic variables).
This work focuses on identifiability conditions and do not provide neither study any estimators to
generalize a risk ratio from an RCT to a target population.

Same questions arise when estimating optimal Individual Treatment Regime (ITR): the covari-
ate shift between the source and target population, renders the source-optimal ITR not necessarily
optimal for the target population. In [27], with S. Yang, we suggest an efficient and robust
transfer learning framework for estimating optimal ITR with right-censored survival.

I have many ongoing works on the topic. With A. Chambaz we design policy learning
methods adapting super-learner methods with missing values. I have also worked on variable
importance for causal forests [3], etc. To push methodological innovation up to the stakeholders
and to lead to actionable solutions, I continue my efforts toward open source implementation. I
have recently federated colleagues to create a taskview on causal inference, to efficiently organise
codes for users.
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3 Low rank matrix estimation

Consider a model where a data matrix X with n rows and p columns is generated from some
distribution £(p) with E,[X] = pu: X € R™P ~ L(p) with p of low rank k. The statistical aim is
to recover the signal p € R™*P from the noisy data. The low-rank assumption arises naturally in
several different settings and is a powerful way to address the problem of recommender systems.
A classical approach is to estimate the signal p as the best rank-k approximation to X, for an
adaptively chosen k:

fre  argmin ||X —plf3 .
peR*p rank(p)<k

The solution is the truncated singular value decomposition (SVD) of the matrix X = UDV "
at the order k, namely fi; = Zle dyuy UZT, where d; are the singular values organized in decreasing
order.

Shrinking and thresholding the singular values Procedures beyond the truncated SVD have
been proposed, including the nuclear norm regularized method which involves soft-thresholding
singular values. However, with S. Sardy, F. Husson, and S. Wager, we [15, 11] demonstrate
that while the soft-thresholding estimator has a small MSE for recovering i in low SNR scenarios, it
struggles in other cases. For greater flexibility, we proposed the adaptive trace norm estimator
(ATN) in [15], which uses two regularization parameters (A, ) to threshold and shrink the singular
min{n, p} AT
values as: Z d; max (1 — W, O) Uy vlT.
=1

This estimator denoted fi(y ) is a versatile estimator that includes both soft and hard thresh-
olding as special cases. Notably, when ~ > 1, it shrinks the smallest singular values more than the
largest, which is beneficial since the smallest singular values are responsible for instability. The pa-
rameters can be chosen via cross-validation, but to address its computational cost, we proposed a
Stein unbiased estimator of the risk in [15] to even handle missing values. Since this requires
knowledge of the noise scale, we also derived a generalized SURE [15], inspired by generalized
cross-validation.

In a specific asymptotic framework, considering n and p as fixed, but letting the noise variance
tend to zero, we derive in [25] the MSE-minimizing estimator where each singular value is multiplied
by the ratio of the signal variance over the total variance. To estimate the rank k we use the
(generalized) cross-validation that I suggested in [10]. In experiments, this estimator and the ATN
one have shown excellent recovery properties, especially when the SNR is moderate to high.
Bootstrap-based regularization All previous estimators are rooted in the SVD. In [11] we
suggested an alternative regularization based on the bootstrap: for an observed matrix X ~ L(u),
the optimal rank & linear estimator for u would be

a*" = X B®)" where B = argénin {]EXNE(“)[H/L — XB|)3] : rank (B) < k:} .

Yet, this estimator is infeasible: it involves computing an integral over an unknown data dis-
tribution. Hence, we propose replacing the draws X ~ £ () from the unknown distribution with
bootstrap draws X ~ Ls(X), resulting in an estimator that we call the stable autoencoder.
In the simplest case (isotropic noise model with Gaussian parametric bootstrap), our method is
equivalent to a classical SVD estimator. For non-isotropic cases (e.g., Poisson noise), the method
does not reduce to singular value shrinkage, and yields new estimators performing well in prac-
tice. By iterating our stable autoencoding scheme, we automatically generate low-rank estimates
without specifying the target rank as a tuning parameter.

I used all these works to derive extensions for missing values to carry out factor analyzes (PCA,
MCA for categorical data) with missing data. We also have extended our results to regularize
correspondence analysis (CA), e.g., for contingency tables such as text-word data. Implementation
are available in the R packages missMDA (250 download/day; > 400,000 in total; paper
cited > 700 times) & FactoMineR (4 500 download/day; > 5 million in total, paper
cited > 7000 times).
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