Decision trees with missing values Journées de Statistique 2019

Nicolas Prost, Julie Josse, Erwan Scornet, Gaël Varoquaux

CMAP, INRIA PARIETAL

June 4, 2019

Motivating data in health

More data \Rightarrow more missing data

- Data filled manually
- Faulty sensors
- Data aggregation issues

Traumabase: 15000 patients/ 250 variables/ 15 hospitals

Center	Age	Sex	Weight	Height	BMI	Lactates	Glasgow
Beaujon	54	m	85	NR	NR	NA	12
Lille	33	m	80	1.8	24.69	4.8	15
Pitie	26	m	NR	NR	NR	3.9	3
Beaujon	63	m	80	1.8	24.69	1.66	15
Pitie	30	w	NR	NR	NR	NM	15

- missing features: Not Recorded, Not Made, Not Applicable, etc.
- aim: predict the Glasgow score

Supervised learning

What it is

- A feature matrix \mathbf{X} and a response vector Y
- A training data set and a test data set
- A loss function to minimize

Goal:

$$f^{\star} \in \operatorname*{argmin}_{f: \mathcal{X}
ightarrow \mathcal{Y}} \mathbb{E}\left[(f(\mathbf{X}) - Y)^2\right].$$

Tool:

$$\hat{f}_n \in \operatorname*{argmin}_{f:\mathcal{X} \to \mathcal{Y}} \left(\frac{1}{n} \sum_{i=1}^n \left(f(\mathbf{X}_i) - Y_i \right)^2 \right).$$

- How to learn a prediction function when data is missing?
- How to predict on a test set when data is missing?

N. Prost

Classification And Regression Trees (CART)¹

Method: Recursively, find which split minimises the (quadratic) loss, *i.e.* which

- feature j*
- threshold z^*

minimise

$$\mathbb{E}\Big[\big(Y - \mathbb{E}[Y|X_j \leq z]\big)^2 \cdot \mathbb{1}_{X_j \leq z} + \big(Y - \mathbb{E}[Y|X_j > z]\big)^2 \cdot \mathbb{1}_{X_j > z}\Big].$$

¹Leo Breiman et al. *Classification and Regression Trees.* Wadsworth, 1984.

Method: Recursively, find which split minimises the (quadratic) loss

root

CART with missing values

Splitting criterion discarding missing values

root

CART with missing values

Splitting criterion discarding missing values

CART with missing values

Splitting criterion discarding missing values

Where to send the incomplete observations?

Probabilistic split²

Completion strategies

Send incomplete observations to either side, flipping a coin.

²J Ross Quinlan. *C4. 5: programs for machine learning*. Elsevier, 2014.

N. Prost

Block propagation³

Completion strategies

Send all incomplete observations to the side which minimises the loss.

³Tianqi Chen and Carlos Guestrin. "Xgboost: A scalable tree boosting system". In: sigkdd international conference on knowledge discovery and data mining. ACM. 2016, N. Prost Trees with missing values 8 / 19

Block propagation³

Completion strategies

Send all incomplete observations to the side which minimises the loss.

³Chen and Guestrin, "Xgboost: A scalable tree boosting system".

N. Prost

Block propagation³

Completion strategies

Send all incomplete observations to the side which minimises the loss.

³Chen and Guestrin, "Xgboost: A scalable tree boosting system".

N. Prost

Surrogate splits⁴ Completion strategies

Find a related variable to split.

⁴Breiman et al., *Classification and Regression Trees*.

Surrogate splits⁴ Completion strategies

Find a related variable to split.

⁴Breiman et al., *Classification and Regression Trees*.

Variable selection bias

Issue with discarding missing values: variables with more values are selected more frequently.

Example: X_1 and X_2 are i.i.d., independent from Y

Figure: X_1 selection frequency for rpart (CART)

Conditional inference trees⁶

Alterative splitting strategy

Separate

• choice of splitting variable: test " $Y \perp X^{j}$ " based on

$$T(X_j) = \sum_{X_i^j observed} X_i^j Y_i$$

• threshold choice: usual impurity.

In order to test by permutation, consider the distribution of all the $\sum_{X_i^j observed} X_i^j Y_{\sigma(i)}$ where σ runs uniformly over the permutations.

This distribution is asymptotically normal⁵, which enables the definition of a p-value.

⁵Helmut Strasser and Christian Weber. "On the asymptotic theory of permutation statistics". In: (1999).

⁶Torsten Hothorn, Kurt Hornik, and Achim Zeileis. "Unbiased Recursive Partitioning: A Conditional Inference Framework". In: *Journal of Computational and Graphical Statistics* 15.3 (2006).

Empirical comparison

Example: X_1 and X_2 are i.i.d., independent from Y

Figure: X_1 selection frequency for rpart (CART) vs ctree (conditional inference trees)

Method: Recursively, find which partition \mathcal{P} minimises

$$\mathbb{E}\Big[(Y - \mathcal{P}(\widetilde{\mathbf{X}}))^2\Big],$$

with, for each feature j and each threshold z, there are three possible partitions,

$$\begin{array}{ll} \{\widetilde{X}_j \leq z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A}\} & \mathsf{VS} & \{\widetilde{X}_j > z\} \\ & \{\widetilde{X}_j \leq z\} & \mathsf{VS} & \{\widetilde{X}_j > z \text{ or } \widetilde{X}_j = \mathbb{N}\mathbb{A}\} \\ & \{\widetilde{X}_j \neq \mathbb{N}\mathbb{A}\} & \mathsf{VS} & \{\widetilde{X}_j = \mathbb{N}\mathbb{A}\} \end{array}$$

 \rightarrow targets $\mathbb{E}[Y|\widetilde{\mathbf{X}}]$

⁷B. E. T. H. Twala, M. C. Jones, and D. J. Hand. "Good Methods for Coping with Missing Data in Decision Trees". In: *Pattern Recogn. Lett.* 29.7 (May 2008).

root

Missing incorporated in attribute

CART with missing values

Missing incorporated in attribute

CART with missing values

Missing incorporated in attribute

CART with missing values

Simulations

First experiment

Models

• Quadratic: 3 gaussian features, $Y = X_1^2 + \varepsilon$.

Mechanisms

- Missing completely at random on X_1
- **2** Missing on large values of X_1

9 Predictive:
$$\mathbf{M} \perp \mathbf{X}$$
, $Y = X_1^2 + 3M_1 + \varepsilon$

Methods

- OCART or conditional trees with surrogate splits
- 2 MIA
- Mean or gaussian imputation
- Adding the mask

Relative scores, quadratic model, 20% missing values First experiment

Simulations

Third experiment

Models

- Linear: gaussian features, $Y = X\beta + \varepsilon$
- Ising the second sec
- Solution Nonlinear features, nonlinear regression.

d = 10

Mechanisms

Missing at random on all ten variables

Methods

- CART or conditional trees with surrogate splits
- 2 MIA
- Mean or gaussian imputation
- Adding the mask

⁸Jerome H Friedman. "Multivariate adaptive regression splines". In: *The annals of statistics* (1991).

Consistency, 40% missing values, MCAR

Third experiment

Conclusion

- Regarding variable selection, conditional inference trees are unbiased;
- this does not solve prediction;
- MIA allows empirical risk minimisation in the "incomplete" space;
- most missing-encoding methods are empirically equivalent in prediction;
- larger discussion on supervised learning with missing values: talk by Julie Josse tomorrow.

Thank you!