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Large-scale and incomplete data

• Large-scaling: large n (number of observations), large p
(dimension of the observations)

• Incompleteness for many reasons: "forgot to fill in the form",
failure of the measuring device, no time to measure in an
emergency situation, aggregating data sets from multiple
hospitals,...

Traumabase: 15 000 patients/ 250 var/ 15 hospitals
Center Age Sex Weight Height Heart rate Lactates

Beaujon 54 m 85 NA NA NA
Lille 33 m 80 1.8 180 4.8
Pitie 26 m NA NA NA 3.9

Beaujon 63 m 80 1.8 190 1.66
Pitie 30 w NA NA NA NA

NA: Not Available.
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Setting

• pXi :, yi qiě1 P Rd ˆ R i.i.d. observations
• Linear regression model

yi “ XT
i : β

‹ ` εi ,

parametrized by β‹ P Rd , with a noise term εi P R.
• Problem: pXi :q’s partially known (missing values in the

covariates).
• How to estimate β‹ ?
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Optimization problem

• For yi “ XT
i : β

‹ ` εi , loss function: fi pβq “ pxXi :, βy ´ yi q
2
{2.

• True risk minimization:

β‹ “ arg min
βPRd

 

Rpβq :“ EpXi :,yi q rfi pβqs
(

• Stochastic gradient method.
• At the heart of Machine Learning.
• Especially useful in high dimension.

4/26



Optimization without missing values
Gradient descent

• Deterministic case: F : Rd Ñ R, we consider min
βPRd

F pβq.

• Gradient descent (GD): the current iterate moves in the
opposite direction of the gradient.

βk “ βk´1 ´ α∇F pβk´1q,

with α the step size.

X Convergence rate: Opk´1q1 if F is convex and L-smooth, i.e.
F is twice differentiable and

@β P Rd , 0 ď |eigenvaluesp∇2F pβqq| ď L.

7 costly: "full" gradient computed at each iteration.

1Yurii Nesterov. Introductory lectures on convex optimization: A basic course.
Vol. 87. Springer Science & Business Media, 2013.

5/26



Optimization without missing values
Stochastic gradient descent

• Stochastic gradient descent (SGD): using unbiased
estimates of ∇F pβk´1q.

βk “ βk´1 ´ αgkpβk´1q

where α is the step-size and E rgkpβk´1q|Fk´1s “ ∇F pβk´1q,
Fk´1 “ σpX1:, y1, . . . ,Xk´1:, yk´1q the filtration.

X It scales with large data.
7 Convergence rate: Opk´1{2q2 if F is convex and L-smooth.

2Arkadi Nemirovski et al. “Robust stochastic approximation approach to stochastic
programming”. In: SIAM Journal on optimization 19.4 (2009), pp. 1574–1609.
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Optimization without missing values
Averaged stochastic gradient descent

• Averaged SGD: using the Polyak-Ruppert averaged iterates.

βk “ βk´1 ´ αgkpβk´1q

β̄k “
1

k ` 1

k
ÿ

i“0

βi

X It scales with large data.

X Convergence rate: Opk´1q3 if F is convex and L-smooth for
least-squares regression.

3Francis Bach and Eric Moulines. “Non-strongly-convex smooth stochastic
approximation with convergence rate O (1/n)”. In: Advances in neural information
processing systems. 2013, pp. 773–781.
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Setting

• pXi :, yi qiě1 P Rd ˆ R i.i.d. observations
• Linear regression model:

yi “ XT
i : β

‹ ` εi ,

parametrized by β‹ P Rd , with a noise term εi P R.
• pXi :q’s partially known (missing values in the covariates).
• How to estimate β‹ ?
• How to derive stochastic algorithms for estimating β‹ ?
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Missing values setting
Formalism

• Di : P t0, 1ud binary mask, such that

Dij “

"

0 if the pi , jq-entry is missing
1 otherwise.

• Access to XNA
i : P pRY tNAuqd instead of Xi :

XNA
i : :“ Xi : d Di : ` NAp1d ´ Di :q,

d element-wise product, 1d “ p1 . . . 1qT P Rd , NAˆ 0 “ 0, NAˆ 1 “ NA.

• Semi-discrete nature: mixed of continuous data (observed
values) and categorical data (the missing values)
ñ usual results can not be applied.
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Missing values setting
Mechanism assumption

• Heterogeneous Missing Completely At Random setting
(MCAR) Ñ Bernoulli mask

D “ pδijq1ďiďn,1ďjďd with δij „ Bppjq,

with 1´ pj the probability that the j-th covariate is missing.

X different missing probability for each covariate

Heterogeneous case:
p1 “ 0.5, p2 “ 0.67, p3 “ 0.83, p4 “ 0.33, p5 “ 0.92.

Homogeneous case: p “ 0.65.
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Dealing with missing values
Existing work7

• Expectation Maximization algorithm4 (maximization of the observed
likelihood)
7 parametric assumptions: Gaussian assumption for the covariates,
no solution available for large dimension p.

• Matrix completion (predicting NA before applying usual algorithms)
7 it can lead to bias and underestimation of the variance of the
estimate5.

• Imputing naively by 0 and modifying the usual algorithms to
account for the imputation error: in particular, a modified SGD6.

.
4Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood

from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

5Roderick JA Little and Donald B Rubin. Statistical analysis with missing data.
Vol. 793. John Wiley & Sons, 2019.

6Anna Ma and Deanna Needell. “Stochastic Gradient Descent for Linear Systems
with Missing Data”. In: arXiv preprint arXiv:1702.07098 (2017).

7Imke Mayer et al. “R-miss-tastic: a unified platform for missing values methods
and workflows”. In: arXiv preprint arXiv:1908.04822 (2019).
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Dealing with missing values
Our strategy inspired by Ma et Needell

Online-streaming: for a new observation pXNA
i : , yi q

• Imputing the missing values by 0.

X̃i : “ XNA
i : d Di : “ Xi : d Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃kpβkq such that E rg̃kpβk´1q |Fk´1s “ ∇Rpβk´1q
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i : d Di : “ Xi : d Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃kpβkq such that E rg̃kpβk´1q |Fk´1s “ ∇Rpβk´1q

• Fk´1 “ σpX1:, y1,D1: . . . ,Xk´1:, yk´1,Dk´1:q

• ∇Rpβk´1q “ EpXk:,ykqrXk:pX
T
k:βk´1 ´ ykqs

• No access to Xk:, only to X̃k:.

• Another source of randomness: E “ EpXk:,ykq,Dk:

indep
“ EpXk:,ykqEDk:

• EDk:
|Fk´1 ù EDk:

X Mask at step k independent from the previous constructed iter-
ate.
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EDk:

”

X̃k:

ı

“ EDk:

»

—

–

¨

˚

˝

δk1Xk1
...

δkdXkd

˛

‹

‚

fi

ffi

fl

“

¨

˚

˝

p1Xk1
...

pdXkd

˛

‹

‚

Thus

EDk:

”

P´1X̃k:

ı

:“

¨

˚

˝

p´1
1

. . .
p´1
d

˛

‹

‚

¨

˚

˝

p1Xk1
...

pdXkd

˛

‹

‚

“ Xk:
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Dealing with missing values
Our strategy inspired by Ma et Needell

Online-streaming: for a new observation pXNA
i : , yi q

• Imputing the missing values by 0.

X̃i : “ XNA
i : d Di : “ Xi : d Di : imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃kpβkq such that E rg̃kpβk´1q |Fk´1s “ ∇Rpβk´1q

One obtains

g̃kpβk´1q “ P´1X̃k:

´

X̃T
k:P

´1βk´1 ´ yk

¯

´pI´PqP´2diag
´

X̃k:X̃
T
k:

¯

βk´1.
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Averaged SGD for missing values
Debiasing the gradient

Algorithm 1 Averaged SGD for Heterogeneous Missing Data

Input: data X̃ , y , α (step size)
Initialize β0 “ 0d .
Set P “ diag

`

ppjqjPt1,...,du
˘

P Rdˆd .
for k “ 1 to n do

g̃k pβk´1q “ P´1X̃k:

´

X̃T
k:P

´1βk´1 ´ yk

¯

´ pI´ PqP´2diag
´

X̃k:X̃
T
k:

¯

βk´1

βk “ βk´1 ´ αg̃kpβk´1q

β̄k “
1

k`1

řk
i“0 βi “

k
k`1 β̄k´1 `

1
k`1βk

end for

• p “ 1ñ P´1 “ Id standard least squares stochastic algorithm.
• Computation cost for the gradient still weak.
• Trivially extended to ridge regularization (no change for the

gradient): minβPRd Rpβq ` λ}β}2, λ ą 0
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Theoretical results
Technical lemmas

• Goal: establish a convergence rate.
• Assumptions on the data: pXk:, ykq P Rd ˆ R i.i.d., Er}Xk:}

2s and
Ery2

k s finite, H :“ EpXk:,ykqrXk:X
T
k: s invertible.

Lemma: noise induced by the imputation by 0 is structured
pg̃k pβ

‹qqk with β‹ is Fk´measurable and @k ě 0,

• Erg̃k pβ‹q |Fk´1s “ 0 a.s.

• Er}g̃k pβ‹q}2 |Fk´1s is a.s. finite.

• Erg̃k pβ‹qg̃k pβ
‹qT s ď Cpβ‹q “ cpβ‹qH.

Lemma: pg̃kpβ‹qqk are a.s. co-coercive
For any k,

• g̃k is Lk,D -Lipschitz

• there exists a random primitive function f̃k which is a.s. convex
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Theoretical results
Convergence results

Theorem: convergence rate of Opk´1q, streaming setting
Assume that for any i , }Xi :} ď γ almost surely for some γ ą 0. For any
constant step-size α ď 1

2L , ensures that, for any k ě 0:

E
“

R
`

β̄k
˘

´ Rpβ‹q
‰

ď
1
2k

¨

˚

˚

˚

˝

a

cpβ‹qd

1´
?
αL

loooomoooon

variance term

`
}β0 ´ β

‹}
?
α

loooomoooon

bias term

˛

‹

‹

‹

‚

2

,

• L :“ supk,D Lipschitz constants of g̃k

• pm “ minj“1,...d pj minimal probability to be observed

• cpβ‹q “

classical term
hkkkikkkj

Varpεk q
p2
m

`

multiplicative noise (induced by naive imputation)
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

ˆ

p2` 5pmqp1´ pmq

p3
m

˙

γ2}β‹}2

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

increasing with the missing values rate

.
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Theoretical results
Comments

• Optimal rate for least-squares regression.

• In the complete case: same bound as Bach and Moulines.

• Bound on the iterates for the ridge regression (β Ñ Rpβq ` λ}β}2

is 2λ-strongly convex).

E
„

›

›

›
βk ´ β

‹
›

›

›

2


ď
1

2λk

˜

a

cpβ‹qd

1´
?
αL

`
}β0 ´ β‹}
?
α

¸2

.
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Theoretical results
What impact of missing values ?

Fewer complete observations is better than more incomplete
ones: is it better to access 200 incomplete observations (with a
probability 50 of observing) or to have 100 complete observations ?

• without missing observations: variance bound scales as
O
´

Varpεkqd
k

¯

.

• with missing observations: O
´

Varpεkqd
kp2

m
`

CpX ,β‹
q

kp3
m

¯

.

• variance bound larger by a factor p´1
m for the estimator derived from

k incomplete observations than for k ˆ pm complete observations.

The variance bound for 200 incomplete observations (with a
probability 50 of observing) is twice as large as for 100 complete
observations.
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Theoretical results
What impact of missing values ?

We do better than discarding all observations which contain
missing values:
Example in the homogeneous case with p the proportion of being
observed.

• keeping only the complete observations, any algorithm:

• number of complete observations kco „ Bpk, pdq.
• statistical lower bound: Varpεkqd

kco
.

• in expectation, lower bound on the risk larger than Varpεkqd
kpd .

• keeping all the observations, SGD: upper bound
O
´

Varpεkqd
kp2 `

CpX ,β‹
q

kp3

¯

.

Our strategy has an upper-bound pd´3 smaller than the lower
bound of any algorithm relying only on the complete observations.
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Theoretical results
Finite-sample setting

Finite-sample setting: n is fixed
• True risk: same convergence rate holds for only one epoch

(we can use only once each data).
Otherwise: mask at step k independent from the previous
constructed iterate ñ bias in the gradient.

• Empirical risk: βn
‹ “ arg minβPRd

 

Rnpβq :“ 1
n

řn
i“1 fi pβq

(

How to choose the k-th obstervation ?
7 k uniformly at random ñ we use a data several times.
7 k not chosen uniformly at random ñ sampling not

uniform and bias in the gradient.
Implications:

• No unbiased gradients for the empirical risk so far.
• Keep in mind: empirical risk is in any case not observed.
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Theoretical results
Comparison with related work

Comparison with Ma et Needell8:
• µ-strongly convex problem
• no averaged iterates

ñ convergence rate of Op log n
µn q.

7 µ generally out of reach.
7 only homogeneous MCAR data.
7 main theorem mathematically invalid (empirical risk).

8Ma and Needell, “Stochastic Gradient Descent for Linear Systems with Missing
Data”.
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Experiments
Synthetic data: setting

• Xi :
i.i.d.
„ N p0,Σq, where Σ with uniform random eigenvectors and

decreasing eigenvalues, εi „ N p0, 1q

• yi “ Xi :β ` εi , for β fixed

• d “ 10, 30% missing values.

• AvSGD averaged iterates with a constant step size α “ 1
2L

a.
• SGDb with iterates βk`1 “ βk ´ αk g̃ik pβkq, and decreasing

step size αk “
1?
k`1

.

• SGD_cstb with a constant step size α “ 1
2L

a

aL is considered to be known.
bMa and Needell, “Stochastic Gradient Descent for Linear Systems with Missing

Data”.
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Experiments
Synthetic data: convergence rate

Figure: Empirical excess risk pRnpβkq ´ Rnpβ
‹qq.

• Multiple passes (left): saturation.

• One pass (right): saturation for SGD_cst, Opn´1{2q for SGD,
Opn´1q for AvSGD.
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Experiments
Synthetic data: homogeneous vs heterogeneous

1001 1010 1100 2000 11000 n

k

10 4

10 3

10 2

10 1
R n

(
k)

R n
(

)

AvSGD_heterogeneous
AvSGD_homogeneous

Figure: Empirical excess risk Rnpβkq ´ Rnpβ
‹q, n “ 105.

• Missing values introduced with different missingness probabilities.

• Taking into account the heterogeneity in the algorithm (plain line):
good rate of convergence for AvSGD.

• Ignoring the heterogeneity (dashed line): stagnation far from the
optimum in termes of empirical risk.
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Experiments
Real dataset: Traumabase, model estimation

• Goal: model the level of platelet upon arrival at the hospital from
the clinical data of 15785 patients.

• Explanatory variables selected by doctors: seven quantitative
(missing) variables.

• Model estimation: do the effect of the variables on the platelet
make sense ?

• Similar results than EM algorithm but effects of HR and ∆.Hemo
are not in agreement with the doctors opinion.

Variable Effect NA %
Lactate ´ 16%
∆.Hemo ` 16%
VE ´ 9%
RBC ´ 8%
SI ´ 2%
HR ` 1%
Age ´ 0%
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Experiments
Real dataset: Superconductivity, prediction task

• Goal: predict the critical temperature of each superconductor. Com-
plete dataset: 81 quantitatives features, 21263 superconductors.

• Introduction of 30% of heterogeneous MCAR missing values, proba-
bilities of being observed vary between 0.7 and 1.

• Dataset divided into training and test set, with no missing values in
the test set.

• Prediction of the critical temperature: ŷn`1 “ XT
n`1β̂ with the coef-

ficient

• β̂ “ βAvSGD
n by applying AvSGD on the training set.

• β̂ “ βEM
n by applying the EM algorithm on the training set.

• β̂ “ β̄AvSGD
n by imputing the missing data naively by the mean

in the training set, and applying the averaged SGD without
missing data (Mean+AvSGD)
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Experiments
Real dataset: Superconductivity, prediction task

Figure: Prediction error }ŷ ´ y}2{}y}2 boxplots.

• EM out of range (due to large number of covariates).

• AvSGD performs well, very close to the one obtained from the com-
plete dataset (AvSGD complete) with or without regularization.
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Conclusion

X Imputing by 0 and debiasing the gradient lead to tight and
rigorous convergence guarantees for the true risk of averaged
SGD.

X Python implementation of regularized regression with missing
values for large scale data.

X A paper.9

Perspectives:
• Dealing with more general loss function.
• More complex missing-data patterns such as MAR and MNAR.

9A. S. et al. “Debiasing Stochastic Gradient Descent to handle missing values”. In:
Advances in Neural Information Processing System (2020).

26/26


	Introduction

