Supervised learning with missing values

Julie Josse
Head of the Inria-Inserm team PreMeDICaL:
"Precision Medicine by Data Integration \& Causal Learning"

February 9, 2023

Presentation Julie Josse: Computational statistics

Academic background:

\triangleright Assistant Professor at Institut Agro Rennes-Angers (2011-15)
\triangleright Visiting Scholar at Stanford University (2013-2015, 18 months)
\triangleright Professor at École Polytechnique (IP Paris) (2016-20)
\triangleright Visiting Researcher at Google Brain Paris (2019-2020). 2 days/week
\triangleright Senior Researcher at Inria Montpellier (Sept. 2020-)
\triangleright Visiting Researcher at Apple Paris (2023-). 1 day/week

Research topics:

\triangleright Dimensionality reduction to visualize high dimensional heterogeneous data
\triangleright Missing values: EM alg., matrix completion, MNAR, supervised learning
\triangleright Causal inference: combining RCT \& observational data, optimal policy
\triangleright Collaborations: medical (hospitals, SANOFI, etc.), energy (EDF), ecology

Software:

$\triangleright \mathrm{R}$ community: book R for Statistics, R foundation, R Forwards (widen the participation of minorities), R packages, R Task Views (missing, causal inf.)
\triangleright Website on missing values (R-miss-tastic), mobile application (ICUBAM)

Traumabase project: decision support for trauma patients

- 30000 French trauma patients ${ }^{1}$
$\triangleright 250$ features from the accident site to the hospital discharge
- 30 hospitals
$\triangleright 4000$ new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	

[^0]
Traumabase project: decision support for trauma patients

- 30000 French trauma patients ${ }^{1}$
$\triangleright 250$ features from the accident site to the hospital discharge
- 30 hospitals
$\triangleright 4000$ new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	

\Rightarrow Explain and predict hemorrhagic shock given pre-hospital features.
Ex: logistic regression/ random forests with missing values in covariates
Prospective study: real-time testing of models in the ambulance via a mobile data collection application (ShockMatrix playstore)

[^1]
Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role" ${ }^{2}$

[^2]
Missing data: important bottleneck in statistical practice

"One of the ironies of Big Data is that missing data play an ever more significant role" ${ }^{2}$

Complete case analysis: delete incomplete samples

- Bias: Resulting sample not representative of the target population
- Information loss: Take a matrix with d features where each entry is missing with probability $1 / 100$, remove a row (of length d) when one entry is missing

$$
\begin{array}{ll}
d=5 & \Longrightarrow \quad \approx 95 \% \text { of rows kept } \\
d=300 & \Longrightarrow \quad \approx 5 \% \text { of rows kept }
\end{array}
$$

[^3]
Inference with missing values

What is a 'true' missing value?

First analysis to perform with missing data (and any data): descriptive study Visualize their patterns for clues as to how \& why they occur FactoMineR ${ }^{3}$

Anomaly	Osthmot.	Improv.	SBP	DBP
No	NA	NA	150	100
Yes	Mannitol	Yes	99	41
No	NA	NA	110	76
Yes	SSH	NA	114	50
No	NA	NA	116	NA

[^4]
What is a 'true' missing value?

First analysis to perform with missing data (and any data): descriptive study Visualize their patterns for clues as to how \& why they occur FactoMineR ${ }^{3}$

Anomaly	Osthmot.	Improv.	SBP	DBP
No	NA	NA	Obs	Obs
Yes	Mannitol	Yes	Obs	Obs
No	NA	NA	Obs	Obs
Yes	SSH	NA	Obs	Obs
No	NA	NA	Obs	NA

Multiple Correspondence Analysis with numeric values coded as Obs \& missing as NA

[^5]
What is a 'true' missing value?

First analysis to perform with missing data (and any data): descriptive study Visualize their patterns for clues as to how \& why they occur FactoMineR ${ }^{3}$

Anomaly	Osthmot.	Improv.	SBP	DBP
No	NA	NA	Obs	Obs
Yes	Mannitol	Yes	Obs	Obs
No	NA	NA	Obs	Obs
Yes	SSH	NA	Obs	Obs
No	NA	NA	Obs	NA

Multiple Correspondence Analysis with numeric values coded as Obs \& missing as NA

[^6]
What is a 'true' missing value?

First analysis to perform with missing data (and any data): descriptive study Visualize their patterns for clues as to how \& why they occur FactoMineR ${ }^{3}$

Anomaly	Osthmot.	Improv.	SBP	DBP
No	NA	NA	Obs	Obs
Yes	Mannitol	Yes	Obs	Obs
No	NA	NA	Obs	Obs
Yes	SSH	NA	Obs	Obs
No	NA	NA	Obs	NA

Multiple Correspondence Analysis with numeric values coded as Obs \& missing as NA

- Detect nested variables:

\Rightarrow Not a 'true' missing value, does not mask an underlying value

[^7]
What is a 'true' missing value?

First analysis to perform with missing data (and any data): descriptive study Visualize their patterns for clues as to how \& why they occur FactoMineR ${ }^{3}$

Anomaly	Osthmot.	Improv.	SBP	DBP	Anomaly-Osthmot.
No	NA	NA	Obs	Obs	No
Yes	Mannitol	Yes	Obs	Obs	Yes Mannitol
No	NA	NA	Obs	Obs	No
Yes	SSH	NA	Obs	Obs	Yes SSH
No	NA	NA	Obs	NA	No

Multiple Correspondence Analysis with numeric values coded as Obs \& missing as NA

- Detect nested variables:
Anomaly:
\Rightarrow Not a 'true' missing value, does not mask an underlying value
\Rightarrow Solution: recode with a 3-level variable 'Yes Mannitol', 'Yes SSH', 'no'
\Rightarrow Feedback on data collection/encoding process
${ }^{3}$ Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)

Missing values mechanism: Rubin's taxonomy ${ }^{4,5}$

- Random Variables:
$\triangleright X \in \mathbb{R}^{d}$: complete unavailable data
$\triangleright M \in\{0,1\}^{d}$: missing pattern, or mask, $M_{j}=1$ if and only if X_{j} is missing For a pattern $m, \operatorname{obs}(m)$ indices of observed entries, $X_{\mathrm{obs}(m)}$ the vector of observed components

[^8]
Missing values mechanism: Rubin's taxonomy ${ }^{4,5}$

- Random Variables:
$\triangleright X \in \mathbb{R}^{d}$: complete unavailable data
$\triangleright M \in\{0,1\}^{d}$: missing pattern, or mask, $M_{j}=1$ if and only if X_{j} is missing
For a pattern $m, \operatorname{obs}(m)$ indices of observed entries, $X_{\mathrm{obs}(m)}$ the vector of observed components

Ex: Simulated missing values according to the 3 mechanisms (Orange points will be missing) in Systolic Blood Pressure - GCS is always observed

[^9]
Solutions to handle $M(C) A R$ values (in the covariates)

Abundant literature: Creation of Rmistatic platform ${ }^{6}$ (>150 packages) Inferential aim: Estimate parameters \& their variance, i.e. $\hat{\beta}, \hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

[^10]
Solutions to handle $M(C) A R$ values (in the covariates)

Abundant literature: Creation of Rmistatic platform ${ }^{6}$ (>150 packages) Inferential aim: Estimate parameters \& their variance, i.e. $\hat{\beta}, \hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms
Pros: Tailored toward a specific problem
Cons: Few softwares even for simple models. Ex: logistic regression ${ }^{7}$ Need to design one specific algorithm for each statistical method

[^11]
Solutions to handle M(C)AR values (in the covariates)

Abundant literature: Creation of Rmistatic platform ${ }^{6}$ (>150 packages) Inferential aim: Estimate parameters \& their variance, i.e. $\hat{\beta}, \hat{V}(\hat{\beta})$ to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms
Pros: Tailored toward a specific problem
Cons: Few softwares even for simple models. Ex: logistic regression ${ }^{7}$ Need to design one specific algorithm for each statistical method

(Multiple) imputation to get a complete data set

Pros: Any analysis can be performed, mice R package
Cons: Generic

[^12]Single imputation by the mean
$\triangleright\left(x_{i 1}, x_{i 2}\right)_{\text {i.i. } . \mathrm{d} .}^{\sim} \mathcal{N}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$

$$
\begin{array}{l|c|}
\mu_{x_{2}}=0 & \hat{\mu}_{x_{2}}=-0.01 \\
\cline { 2 - 2 } \sigma_{x_{2}}=1 & \hat{\sigma}_{x_{2}}=1.01 \\
\cline { 2 - 2 }=0.6 & \hat{\rho}=0.66 \\
\hline
\end{array}
$$

Single imputation by the mean

$\triangleright\left(x_{i 1}, x_{i 2}\right)_{\text {i.i.d. }}^{\sim} \mathcal{N}_{2}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$
$\triangleright 70 \%$ of missing entries completely at random on X_{2}

\mathbf{X}_{1}	\mathbf{X}_{2}
-0.56	NA
-0.86	NA
$\ldots \ldots$	\ldots
2.16	0.7
0.16	NA

$$
\begin{array}{l|c|}
\mu_{x_{2}}=0 & \hat{\mu}_{x_{2}}=0.18 \\
\sigma_{x_{2}}=1 & \hat{\sigma}_{x_{2}}=0.9 \\
\cline { 2 - 2 }=0.6 & \hat{\rho}=0.6 \\
\hline
\end{array}
$$

Single imputation by the mean

$\triangleright\left(x_{i 1}, x_{i 2}\right) \underset{\text { i.i.d. }}{\sim} \mathcal{N}_{2}\left(\left(\mu_{x_{1}}, \mu_{x_{2}}\right), \Sigma_{x_{1} x_{2}}\right)$
$\triangleright 70 \%$ of missing entries completely at random on X_{2}
\triangleright Estimate parameters on the mean imputed data

\mathbf{X}_{1}	\mathbf{X}_{2}
-0.56	$\mathbf{0 . 0 1}$
-0.86	$\mathbf{0 . 0 1}$
$\ldots .$.	\ldots
2.16	0.7
0.16	$\mathbf{0 . 0 1}$

mean imputation

$\mu_{\chi_{2}}=0$	$\hat{\mu}_{x_{2}}=0.01$
$\sigma_{\chi_{2}}=1$	$\hat{\sigma}_{\chi_{2}}=0.5$
$\rho=0.6$	$\hat{\rho}=0.30$

Mean imputation deforms joint and marginal distributions

Mean imputation should be avoided for estimation

Individuals factor map (PCA)

Individuals factor map (PCA)

Variables factor map (PCA)

Variables factor map (PCA)

PCA with mean imputation
library (FactoMineR) PCA (ecolo) Warning message: Missing are imputed by the mean of the variable:
You should use imputePCA from missMDA

EM-PCA
library (missMDA) imp <- imputePCA (ecolo) PCA (imp\$comp)

Ecological data: $n=69000$ species -6 traits. Estimated correlation between
Pmass \& Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA) ${ }^{8}$

[^13]
Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution $x_{i 2}=\beta_{0}+\beta_{1} x_{i 1}+\varepsilon_{i}, \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
\triangleright Regression imputation: Estimate β (here with complete data) and impute $\hat{x}_{i 2}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1} \Rightarrow$ variance underestimated and correlation overestimated
\triangleright Stochastic reg. imputation: Estimate β and σ - impute from the predictive $\hat{x}_{i 2} \sim \mathcal{N}\left(\beta_{0}+\hat{\beta}_{1} x_{i 1}, \hat{\sigma}^{2}\right) \Rightarrow$ preserve distributions

Impute while preserving distribution. Multivariate case

Assuming a joint distribution

\triangleright Gaussian model $x_{i} \sim \mathcal{N}(\mu, \Sigma)$
\triangleright Low rank : $X_{n \times d}=\mu_{n \times d}+\varepsilon \varepsilon_{i j} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ with μ of low rank
\Rightarrow Powerful in recommendation system: Netflix prize 90% of missing
\Rightarrow Use similarities between rows \& links between variables + reduct. of dim.
\Rightarrow Different regularization depending on noise regime ${ }^{9,10}$
\Rightarrow Count data, ${ }^{11}$ ordinal data, categorical data, blocks/multilevel data ${ }^{12}$
\triangleright Using optimal transport, ${ }^{13}$ deep generative models

[^14]
Impute while preserving distribution. Multivariate case

Assuming a joint distribution

\triangleright Gaussian model $x_{i} \sim \mathcal{N}(\mu, \Sigma)$
\triangleright Low rank: $X_{n \times d}=\mu_{n \times d}+\varepsilon \varepsilon_{i j}{ }^{\text {iid }} \mathcal{N}\left(0, \sigma^{2}\right)$ with μ of low rank \Rightarrow Powerful in recommendation system: Netflix prize 90% of missing
\Rightarrow Use similarities between rows \& links between variables + reduct. of dim.
\Rightarrow Different regularization depending on noise regime ${ }^{9,10}$
\Rightarrow Count data, ${ }^{11}$ ordinal data, categorical data, blocks/multilevel data ${ }^{12}$
\triangleright Using optimal transport, ${ }^{13}$ deep generative models

Iterating conditional models (joint distribution implicitly defined)

\triangleright with multinomial, Poisson regression (ICE: Imputation by Chained Equations)
\triangleright iterative imputation of each variable by random forests

[^15]
Single imputation is not enough: Underestimates the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\ldots	no shock
1	63	40	\ldots	shock

Single imputation is not enough: Underestimates the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\cdots	no shock
1	63	40	\ldots	shock

\Rightarrow Completed Traumabase

X_{1}	X_{2}	X_{3}	\ldots	Y
3	20	10	\ldots	shock
-6	45	6	\ldots	shock
0	4	30	\ldots	no shock
-4	32	35	\ldots	shock
-2	75	12	\ldots	no shock
1	63	40	\ldots	shock

Single imputation is not enough: Underestimates the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\cdots	no shock
1	63	40	\cdots	shock

\Rightarrow Completed Traumabase

X_{1}	X_{2}	X_{3}	\ldots	Y
3	20	10	\ldots	shock
-6	45	6	\ldots	shock
0	4	30	\ldots	no shock
-4	32	35	\ldots	shock
-2	75	12	\ldots	no shock
1	63	40	\ldots	shock

A single value can't reflect the uncertainty of prediction Multiple impute 1) Generate M plausible values for each missing value

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	75	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

Visualization of the imputed values ${ }^{14}$

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	15	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

library (missMDA) MIPCA (traumadata)

Projection of the M imputed data on a 'compromise' subspace (PCA with missing values)

Is it possible to handle 30% of missing values? 50% ?, etc. Both \% of missing values \& signal matter (5\% of NA can be an issue)

[^16]
Multiple imputation: standard errors are not underestimated

1) Generate M plausible values for each missing value

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
1	63	40	s
-2	15	12	no s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
1	63	40	s
-2	10	12	no s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
1	63	40	s
-2	20	12	no s

2) Perform the analysis on each imputed data set: $\hat{\beta}_{m}, \widehat{\operatorname{Var}}\left(\widehat{\beta}_{m}\right)$
3) Combine the results (Rubin's rules):

$$
\begin{aligned}
& \hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
& T=\underbrace{\frac{1}{M} \sum_{m=1}^{M} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)}_{\text {Within-imputation variance }}+\underbrace{\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}}_{\text {Between-imputation variance }}
\end{aligned}
$$

\Rightarrow Variability of missing values taken into account.

Take home message on inference \& imputation

- Methods used in practice are the one implemented in a sustainable way: few implementations of EM strategies
- "Imputation is both seductive \& dangerous" (Dempster \& Rubin, 1983). Seductive: "can lull the user into the pleasant state of believing that the data are complete

Dangerous: "it lumps together situations where the problem is minor enough to be handled in this way \& situations where estimators applied to the imputed data have substantial biases."

Take home message on inference \& imputation

- Methods used in practice are the one implemented in a sustainable way: few implementations of EM strategies
- "Imputation is both seductive \& dangerous" (Dempster \& Rubin, 1983). Seductive: "can lull the user into the pleasant state of believing that the data are complete

Dangerous: "it lumps together situations where the problem is minor enough to be handled in this way \& situations where estimators applied to the imputed data have substantial biases."

- Single imputation aims at completing data as best as possible \Rightarrow low rank approaches are powerful for heterogeneous data
- Multiple imputation aims at estimating the parameters and their variability taking into account the uncertainty of the missing values

[^17]
Take home message on inference \& imputation

- Methods used in practice are the one implemented in a sustainable way: few implementations of EM strategies
- "Imputation is both seductive \& dangerous" (Dempster \& Rubin, 1983). Seductive: "can lull the user into the pleasant state of believing that the data are complete

Dangerous: "it lumps together situations where the problem is minor enough to be handled in this way \& situations where estimators applied to the imputed data have substantial biases."

- Single imputation aims at completing data as best as possible \Rightarrow low rank approaches are powerful for heterogeneous data
- Multiple imputation aims at estimating the parameters and their variability taking into account the uncertainty of the missing values
- How to aggregate lasso regressions? Alternatives EM ${ }^{15}$

[^18]
Challenges and on-going work with heterogeneous data sources and missing data

Sporadic \& systematic (missing variable in one hospital). Due to the pandemic, many patients did not complete their tests

- What to do when you have both MCAR, MAR, MNAR in the data?

Supervised learning with missing values

Prediction with missing values

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$\mathbf{Y}=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{\mathbf{X}}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Find a regression function that minimizes the expected risk

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f:}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{d} \rightarrow \mathbb{R}\right. \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M)}, M\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern m of missing values (2^{d} patterns) ${ }^{16}$

[^19]
Prediction with missing values

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$\mathbf{Y}=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{\mathbf{X}}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Find a regression function that minimizes the expected risk

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \underset{\mathbb{R}^{d} \rightarrow \mathbb{R}}{ }}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M)}, M\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern m of missing values (2^{d} patterns) ${ }^{16}$

[^20]
Prediction with missing values

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$\mathbf{Y}=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{\mathbf{X}}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \mathbf{X}=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad \mathbf{M}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Find a regression function that minimizes the expected risk

$$
\text { Bayes rule: } f^{*} \in \underset{f: \underset{\mathbb{R}^{d} \rightarrow \mathbb{R}}{ }}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] .
$$

A learner estimates the regression function from a train set minimizing the empirical risk: $\hat{f}_{\mathcal{D}_{n, \text { train }}} \in \underset{f: \widetilde{\mathbb{R}}^{d} \rightarrow \mathbb{R}}{\arg \min }\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(\tilde{X}_{i}\right), Y_{i}\right)\right)$
A new data $\mathcal{D}_{n, \text { test }}$ to estimate the generalization error rate

- Bayes consistent: $\mathbb{E}\left[\ell\left(\hat{f}_{n}(\tilde{X}), Y\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\ell\left(f^{\star}(\tilde{X}), Y\right)\right]$

Supervised learning with missing values

Differences with classical litterature

Aim: predict an outcome Y (not estimate parameters \& their variance) Specificities: both train \& test sets with missing values; Otherwise, distributional shift (data generating process (X, Y, M))
\Rightarrow Is it possible to use previous approaches (EM - impute), consistent?
\Rightarrow Do we need to design new ones?

Supervised learning with missing values

Differences with classical litterature

Aim: predict an outcome Y (not estimate parameters \& their variance) Specificities: both train \& test sets with missing values; Otherwise, distributional shift (data generating process (X, Y, M))
\Rightarrow Is it possible to use previous approaches (EM - impute), consistent?
\Rightarrow Do we need to design new ones?

Imputation prior to learning: Impute then Regress

Common practice: use off-the-shelf methods for

1) imputation of missing values
2) supervised-learning on the completed data

Impute train \& test sets with the same model. Easy with univariate imputation: compute the means on the observed data ($\hat{\mu}_{1}, \ldots, \hat{\mu}_{d}$) of each column of the train set \& impute the test set with such means

Constant (mean) imputation is consistent for prediction ${ }^{16}$

Framework - assumptions

\triangleright Regression model: $Y=f^{\star}(X)+\varepsilon$ $f^{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a continuous function of the complete data X $\varepsilon \in \mathbb{R}$ is a centered random noise variable independent of $\left(X, M_{1}\right)$ $X=\left(X_{1}, \ldots, X_{d}\right)$ has a continuous density $g>0$ on $[0,1]^{d}$ $\left\|f^{\star}\right\|_{\infty}=\sup _{x \in \mathbb{R}^{d}}\left|f^{\star}(x)\right|<\infty$
\triangleright Missing data: MAR on X_{1} with $M_{1} \Perp X_{1} \mid X_{2}, \ldots, X_{d}$ $\left(x_{2}, \ldots, x_{d}\right) \mapsto \mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]$ is continuous

Constant (mean) imputation is consistent for prediction ${ }^{16}$

- Constant imputation $x^{\prime}=\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right): x_{1}^{\prime}=x_{1} \mathbb{1}_{M_{1}=0}+\alpha \mathbb{1}_{M_{1}=1}$
- Use a universally consistent algorithm (for all distribution) to approach the regression function $f_{\text {impute }}^{\star}\left(x^{\prime}\right)=\mathbb{E}\left[Y \mid X=x^{\prime}\right]$

Theorem. (J. et al. 2019)

$$
\begin{aligned}
f_{\text {impute }}^{\star}\left(x^{\prime}\right)= & \mathbb{E}\left[Y \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=1\right] \\
& \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, x_{d}=x_{d}\right]>0} \\
& +\mathbb{E}\left[Y \mid X=x^{\prime}\right] \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]=0} \\
& +\mathbb{E}\left[Y \mid X=x^{\prime}, M_{1}=0\right] \mathbb{1}_{x_{1}^{\prime} \neq \alpha} .
\end{aligned}
$$

Prediction with constant is equal to the Bayes function almost everywhere

$$
f_{\text {impute }}^{\star}\left(X^{\prime}\right)=f^{\star}(\tilde{X})=\mathbb{E}[Y \mid \tilde{X}]
$$

Rq: pointwise equality if using a constant out of range.

Consistency of constant imputation: Rationale

\triangleright Specific value, systematic like a code for missing
\triangleright The learner detects the code and recognizes it at the test time (the imputed data distribution shouldn't differ between train and test)
\triangleright With categorical data, just code "Missing"
\triangleright With continuous data, any constant:
\triangleright De-identified/imputed missing data: recovers from which pattern it comes
\triangleright Need a lot of data (asymptotic result) and a universally consistent learner

Imputing both train \& test with the same constant and regress is consistent despite its drawbacks for estimation (useful in practice)

Consistency of constant imputation: Rationale

\triangleright Specific value, systematic like a code for missing
\triangleright The learner detects the code and recognizes it at the test time (the imputed data distribution shouldn't differ between train and test)
\triangleright With categorical data, just code "Missing"
\triangleright With continuous data, any constant: out of range
\triangleright De-identified/imputed missing data: recovers from which pattern it comes
\triangleright Need a lot of data (asymptotic result) and a universally consistent learner

Imputing both train \& test with the same constant and regress is consistent despite its drawbacks for estimation (useful in practice)

Bayes optimality of impute-n-regress ${ }^{17}$

- Imputation function: $\forall m \in\{0,1\}^{d}$, let $\phi^{(m)} \in \mathcal{C}_{\infty}: \mathbb{R}^{|o b s(m)|} \rightarrow \mathbb{R}^{|m i s(m)|}$ which outputs values for the missing entries based on the observed ones

$$
\Phi:(\mathbb{R} \cup\{\mathrm{NA}\})^{d} \rightarrow \mathbb{R}^{d}: \forall j \in \llbracket 1, d \rrbracket, \Phi_{j}(\widetilde{X})= \begin{cases}X_{j} & \text { if } M_{j}=0 \\ \phi_{j}^{(M)}\left(X_{o b s(M)}\right) & \text { if } M_{j}=1\end{cases}
$$

- Regression on imputed data: $g_{\Phi}^{\star} \in \underset{g: \mathbb{R}^{d} \mapsto \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[(Y-g \circ \Phi(\widetilde{X}))^{2}\right]$, minimizer of the risk on the imputed data

Theorem

Assume that the response Y satisfies $Y=f^{\star}(X)+\varepsilon$
Then, for all missing data mechanisms \& almost all imputation functions, $g_{\phi}^{\star} \circ \Phi$ is Bayes optimal
\Rightarrow A universally consistent algorithm trained on the imputed data $\Phi(\widetilde{X})$ is Bayes consistent

Asymptotically, imputing well is not needed to predict well

Rationale of proof: imputation creates manifolds

Which imputation function should one choose?

Linear problem (high noise)

- Mean imputation

Friedman problem (high noise)

- Gaussian imputation
- MIA

Non-linear problem (low noise)

Bayes rate

- Block (XGBoost)

Consistency of impute-then-regress. Ex: 3 regression models, 40% of MCAR in covariates, different imputation methods, then regress with random forests.

- A "better" imputation could create an easier learning problem
- Constant imputation is consistent but introduces strong discontinuities
\Rightarrow Which imputation and predictor should one use?

Best imputation is joint learn with regression ${ }^{18}$

- Neumiss network:
\triangleright Classic network with multiplications by the mask nonlinearities $\odot M$
\triangleright Motivated by linear regression with missing values in the covariates
\triangleright Theoritically grounded: approximation of the Bayes predictor (truncated neumiss series to approximate inverses of covariance matrices)
- Couple Neumiss and MLP to jointly learn imputation and regression

[^21]
Take home message in supervised learning with missing values

Supervised learning different from inferential aim

Bayes optimality of Impute then Regress

- Single constant imputation is consistent with a universally consistent learner
- Can even work in MNAR
- Rethinking imputation: a good imputation is the one that makes the prediction easy

Implicit and jointly learned Impute-then-Regress strategy

- Neumiss network: new architecture $\odot M$ nonlinearity
- Tree-based models: Missing Incorporated in Attribute (MIA) (implemented in generalized random forest package grf, partykit)

Challenges and on-going works with missing values

\triangleright Uncertainty quantification with conformal prediction ${ }^{19}$ (with Y. Romano \& A. Dieuleveut)
Predictive intervals for any predictive algorithm (neural nets, random forests), in finite samples with no assumption on the data distribution except for the exchangeability

[^22]
Challenges and on-going works with missing values

\triangleright Uncertainty quantification with conformal prediction ${ }^{19}$ (with Y. Romano \& A. Dieuleveut)
Predictive intervals for any predictive algorithm (neural nets, random forests), in finite samples with no assumption on the data distribution except for the exchangeability
\triangleright Times series with MNAR (prediction with covariates measured regularly over time \& static covariates)
\triangleright Federated learning with missing values

[^23]
Challenges and on-going works with missing values

\triangleright Uncertainty quantification with conformal prediction ${ }^{19}$ (with Y. Romano \& A. Dieuleveut)
Predictive intervals for any predictive algorithm (neural nets, random forests), in finite samples with no assumption on the data distribution except for the exchangeability
\triangleright Times series with MNAR (prediction with covariates measured regularly over time \& static covariates)
\triangleright Federated learning with missing values
\triangleright Causal inference from incomplete heterogeneous sources, ${ }^{20},{ }^{21}, 22,23$ (treatment estimation, generalisation of randomized control trial, etc.)

[^24]
Collaborators on missing values

- F. Husson, Prof. Agronomy University. (package missMDA, FactoMineR)
- Gosia Bogdan, Prof. Wroclaw. High dimensional regression
- Claire Boyer, Assoc. Prof. Sorbonne. Signal processing, missing values
- Aymeric Dieuleveut, Asso. Prof. Ecole Polytechnique, Paris. Optimization
- Imke Mayer, Postdoc Charité Institute, Berlin. Causal inference
- Aude Sportisse, Postdoc Inria Nice. Missing values
- Marine Le Morvan, Junior researcher at INRIA, Paris. Supervised learning
- Erwan Scornet, Asso. Prof. Ecole Polytechnique, Paris. Random forests
- Gael Varoquaux, Senior researcher at INRIA, Paris. ML, Scikit-learn
- Margaux Zaffran, PhD student, EDF. Conformal prediction

Challenges with heterogeneous sources and missing data

Monitor population \& assess wetlands conservation policies

- National agency for wildlife and hunting management (ONCFS) data
- Contingency tables: Water (785 wetland sites) - bird (23 species) count data, from 1990-2016 in 5 countries in North Africa
- Side information (17 variables) on sites \& years: meteo, altitude, etc.

Common pochard (canard milouin)

				Site	Year	Rain	Eco	Country	Agri
Site	2008	2009	2010	1	2008	163.7	0.8	Algeria	16.2
1	NA	0	0	2	2008	60.7	0.8	Algeria	16.2
2	4	50	25	3	2008	227.9	0.8	Algeria	16.2
3	NA	0			2008	174.8	0.8	Algeria	16.2
4	NA	NA	NA	5	2008	163.7	0.8	Algeria	16.2
5	NA	NA	NA	6	2008	230.7	0.8	Algeria	16.2
6	0	0	0	7	2008	243.5	0.8	Algeria	16.2
7	5	75	870	8	2008	262.6	0.8	Algeria	16.2
8	9	34	0	9	2008	197.3	0.8	Algeria	16.2
9	10	8	30	10	2008	227.9	0.8	Algeria	16.2

\Rightarrow Aims: Assess the effect of time on species abundances
$\Rightarrow 70 \%$ of missing values in contingency tables (drough, war, etc.) ${ }^{24,25}$

[^25]Iterative imputation by random forests versus by low rank (PCA)

	Feat1	Feat2	Feat3	Feat4	Feat5...
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Missing

Feat1	Feat2	Feat3	Feat4	Feat5
1	1.0	1.00	1	1
1	1.0	1.00	1	1
2	2.0	2.00	2	2
2	2.0	2.00	2	2
3	3.0	3.00	3	3
3	3.0	3.00	3	3
4	4.0	4.00	4	4
4	4.0	4.00	4	4
5	5.0	5.00	5	5
5	5.0	5.00	5	5
6	6.0	6.00	6	6
6	6.0	6.00	6	6
7	7.0	7.00	7	7
7	7.0	7.00	7	7
8	6.87	6.87	8	8
8	6.87	6.87	8	8
9	6.87	6.87	9	9
9	6.87	6.87	9	9
10	6.87	6.87	10	10
10	6.87	6.87	10	10

missForest

Feat1 Feat2 Feat3 Feat4 Feat5

1	1	1	1	1
1	1	1	1	1
2	2	2	2	2
2	2	2	2	2
3	3	3	3	3
3	3	3	3	3
4	4	4	4	4
4	4	4	4	4
5	5	5	5	5
5	5	5	5	5
6	6	6	6	6
6	6	6	6	6
7	7	7	7	7
7	7	7	7	7
8	8	8	8	8
8	8	8	8	8
9	9	9	9	9
9	9	9	9	9
10	10	10	10	10
10	10	10	10	10

imputePCA
\Rightarrow Imputation inherits from the method: Random forests
(computationaly costly) handles non linear relationships/ PCA linear ones

Bayes optimality of impute-n-regress (Le morvan et al. 2021)

Complete data

Imputed data (manifolds)

Rationale: Imputation create manifolds to which the learner adapts

1. All data points with a missing data pattern m are mapped to a manifold $\mathcal{M}^{(m)}$ of dimension $|o b s(m)|$ (Preimage Theorem)
2. The missing data patterns of imputed data points can almost surely be de-identified (Thom transversality Theorem) ${ }^{26}$
3. Given 2), we can build prediction functions, independent of m, that are Bayes optimal for all missing data patterns
${ }^{26}$ Non transverse: the manifolds on which the data with either $\times 1$ missing or $\times 2$ missing are projected are exactly the same (the same line)

Jointly learn imputation \& prediction:
Neumiss

Linear regression with missing values

Linear model:

$Y=\beta_{0}+\langle X, \beta\rangle+\varepsilon, \quad X \in \mathbb{R}^{d}, \varepsilon$ Gaussian

Bayes predictor for the linear model:

$$
\begin{aligned}
f^{\star}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[\beta_{0}+\beta^{\top} X \mid M, X_{o b s(M)}\right] \\
& =\beta_{0}+\beta_{o b s(M)}^{\top} X_{o b s(M)}+\beta_{\operatorname{mis}(M)}^{\top} \mathbb{E}\left[X_{\operatorname{mis}(M)} \mid M, X_{o b s(M)}\right] \\
& =\sum_{m \in\{0,1\}^{d}} \beta_{0}+\beta_{o b s(m)}^{\top} X_{o b s(m)}+\beta_{\operatorname{mis}(m)}^{\top} \mathbb{E}\left[X_{m i s(m)} \mid M=m, X_{o b s(m)}\right]
\end{aligned}
$$

Assumptions on covariates and missing values (X, M)

1. Gaussian assumption $X \sim \mathcal{N}(\mu, \Sigma)+$ MCAR and MAR

Under Assump. the Bayes predictor is linear per pattern

$f^{\star}\left(X_{o b s}, M\right)=\beta_{0}+\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\Sigma_{m i s, o b s}\left(\Sigma_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle$ use of obs instead of obs (M) for lighter notations - Expression for 2.

Linear model with missing values not necessarely linear

Example

Let $Y=X_{1}+X_{2}+\varepsilon$, where $X_{2}=\exp \left(X_{1}\right)+\varepsilon_{1}$. Now, assume that only X_{1} is observed. Then, the model can be rewritten as

$$
Y=X_{1}+\exp \left(X_{1}\right)+\varepsilon+\varepsilon_{1}
$$

where $f\left(X_{1}\right)=X_{1}+\exp \left(X_{1}\right)$ is the Bayes predictor. In this example, the submodel for which only X_{1} is observed is not linear.
\Rightarrow There exists a large variety of submodels for a same linear model. Depend on the structure of X and on the missing-value mechanism.

Neumiss Networks to approximate the covariance matrix

Bayes predictor requires inverting many covariance matrices

$$
f^{\star}\left(X_{o b s}, M\right)=\beta_{0}^{+}\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\sum_{m i s, o b s}\left(\Sigma_{o b s}\right)^{-1}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle
$$

Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(l d-\Sigma_{o b s(m)}\right)^{k}$

Neumiss Networks to approximate the covariance matrix

Order ℓ approx. of the Bayes predictor)

$$
f_{\ell}^{\star}\left(X_{o b s}, M\right)=\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\Sigma_{m i s, o b s} S_{o b s(m)}^{(\ell)}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle
$$

Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$

Neumiss Networks to approximate the covariance matrix

Order ℓ approx. of the Bayes predictor)

$$
f_{\ell}^{\star}\left(X_{o b s}, M\right)=\left\langle\beta_{o b s}, X_{o b s}\right\rangle+\left\langle\beta_{m i s}, \mu_{m i s}+\Sigma_{m i s, o b s} S_{o b s(m)}^{(\ell)}\left(X_{o b s}-\mu_{o b s}\right)\right\rangle
$$

Order- ℓ approx of $\left(\Sigma_{o b s(m)}^{-1}\right)$ for any m defined recursively:

$$
S_{o b s(m)}^{(\ell)}=\left(I d-\Sigma_{o b s(m)}\right) S_{o b s(m)}^{(\ell-1)}+I d .
$$

Neuman Series, $S^{(0)}=I d, \ell=\infty:\left(\Sigma_{o b s(m)}\right)^{-1}=\sum_{k=0}^{\infty}\left(I d-\Sigma_{o b s(m)}\right)^{k}$
\Rightarrow Neural network architecture to approximate the Bayes predictor

Figure 1: Depth of $3, \bar{m}=1-m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

Networks with missing values: $\odot M$ nonlinearity ${ }^{27}$

- Implementing a network with the matrix weights $W^{(k)}=\left(I-\Sigma_{o b s(m)}\right)$ masked differently for each sample can be challenging
- Masked weights is equivalent to masking input \& output vector.

Let v a vector, $\bar{m}=1-m .\left(W \odot \bar{m} \bar{m}^{\top}\right) v=(W(v \odot \bar{m})) \odot \bar{m}$
Classic network with multiplications by the mask nonlinearities $\odot M$

Jointly learn imputation and regression

[^26]
Which imputation function and predictor should one choose?

- Oracles regression f^{\star} \& conditional imputation $\mathbb{E}\left[X_{m i s} \mid X_{o b s}, M\right]: f^{\star} \circ \Phi^{C l}$

Proposition (excess of risk)

Assum PSD matrices \bar{H}^{+}\& \bar{H}^{-}s.t. for all $X \in \mathcal{S}, \bar{H}^{-} \leq H(X) \leq \bar{H}^{+}, H(X)$ the Hessian of f^{*} at X (min. \& max. curvatures of f^{*} in any direction are uniformly bounded over the entire space)
$\mathcal{R}\left(f^{\star} \circ \Phi^{C l}\right)-\mathcal{R}^{\star} \leq \frac{1}{4} \mathbb{E}_{M}\left[\max \left(\operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{-} \Sigma_{\text {mis } \mid o b s, M}\right)^{2}, \operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{+} \Sigma_{m i s \mid o b s, M}\right)^{2}\right)\right]$
High excess risk if both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high (linear regression consistent)

Which imputation function and predictor should one choose?

- Oracles regression f^{\star} \& conditional imputation $\mathbb{E}\left[X_{m i s} \mid X_{\text {obs }}, M\right]: f^{\star} \circ \Phi^{C l}$

Proposition (excess of risk)

Assum PSD matrices \bar{H}^{+}\& \bar{H}^{-}s.t. for all $X \in \mathcal{S}, \bar{H}^{-} \leq H(X) \leq \bar{H}^{+}, H(X)$ the Hessian of f^{*} at X (min. \& max. curvatures of f^{*} in any direction are uniformly bounded over the entire space)
$\mathcal{R}\left(f^{\star} \circ \Phi^{C l}\right)-\mathcal{R}^{\star} \leq \frac{1}{4} \mathbb{E}_{M}\left[\max \left(\operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{-} \Sigma_{\text {mis } \mid o b s, M}\right)^{2}, \operatorname{tr}\left(\bar{H}_{\text {mis }, \text { mis }}^{+} \Sigma_{m i s \mid o b s, M}\right)^{2}\right)\right]$
High excess risk if both 1) the curvature of f^{\star} is high and 2) the variance of the missing data given the observed one is high (linear regression consistent)

- Is there a continuous function g, s.t. $g \circ \Phi^{C l}$ is Bayes optimal? No.

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

CART with missing values

1) Select variable and threshold on observed values ($1 \& 4$ for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

$$
X_{1} \leq s_{1}^{\text {root }}
$$

1) Select variable and threshold on observed values (1 \& 4 for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.
2) Propagate observations $(2 \& 3)$ with missing values?

- Block: Send all to a side by minimizing the error (xgboost, lightgbm)
- Surrogate split: Search another variable that gives a close partition (rpart)

Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1. $\left\{\widetilde{X}_{j} \leq z\right.$ or $\widetilde{X}_{j}=$ NA $\}$ vs $\left\{\widetilde{X}_{j}>z\right\}$
2. $\left\{\widetilde{X}_{j} \leq z\right\}$ vs $\left\{\widetilde{X}_{j}>z\right.$ or $\left.\widetilde{X}_{j}=\mathrm{NA}\right\}$
3. $\left\{\widetilde{X}_{j} \neq \mathrm{NA}\right\}$ vs $\left\{\widetilde{X}_{j}=\mathrm{NA}\right\}$.
\triangleright The splitting location z depends on the missing values
\triangleright Missing values treated like a category (well to handle $\mathbb{R} \cup N A$)
\triangleright Good for informative pattern (M explains Y)
Targets one model per pattern:

$$
\mathbb{E}[Y \mid \tilde{X}]=\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
$$

\triangleright Implementation ${ }^{28}$: grf package, scikit-learn, partykit
\Rightarrow Extremely good performances in practice for any mechanism
${ }^{28}{ }_{i m p l e m e n t a t i o n ~ t r i c k, ~ J . ~ T i b s h i r a n i, ~ d u p l i c a t e ~ t h e ~ i n c o m p l e t e ~ c o l u m n s, ~ a n d ~ r e p l a c e ~}^{\text {a }}$ the missing entries once by $+\infty$ and once by $-\infty$

Causal inference from (incomplete) heterogeneous sources

- Estimate causal effect: Example on trauma brain patients ${ }^{29}$
"tranexamic acid" (treatment) impact on " 28 days mortality" (outcome)
Estimator: Augmented Inverse Propensity Weighting uses non-parametric regression models Treatment \sim covariates \& Outcome \sim covariates
\Rightarrow Extended to handle missing values (implemented in grf package)
${ }^{29}$ Wager, J., Doubly robust estimation with incomplete confounders. Ann. Appl. Stat. 2020.

Causal inference from (incomplete) heterogeneous sources

- Estimate causal effect: Example on trauma brain patients ${ }^{29}$
"tranexamic acid" (treatment) impact on "28 days mortality" (outcome)
Estimator: Augmented Inverse Propensity Weighting uses non-parametric regression models Treatment \sim covariates \& Outcome \sim covariates
\Rightarrow Extended to handle missing values (implemented in grf package)
- Generalization of randomized control trial's findings toward a target pop., with distributional shift (data fusion, recovery from selection biais) $30,31,32,33$

			Covariates				Treat
Set	S	x_{1}	x_{2}	x_{3}	W	Y	
1	$\mathcal{R C \mathcal { T }}$	1	1.1	20	NA	1	24.1
	$\mathcal{R C \mathcal { T }}$	1	-6	NA	NA	0	26.3
n	$\mathcal{R C T}$	1	0	15	NA	1	23.5
$n+1$	Target	$?$	NA	35	7.1		
$n+2$	Target	$?$	-2	52	2.4		
	Target	$?$		\ldots			
$n+m$	Target	$?$	-2	22	NA		

[^27]
Traumabase project: decision support for trauma patients

$\triangleright 30000$ French trauma patients ${ }^{34}$
$\triangleright 250$ features from the accident site to the hospital discharge

- 30 hospitals
$\triangleright 4000$ new patients/ year

Center	Accident	Age	Sex	Weight	Lactactes	BP	TXA.	Y
Beaujon	fall	54	m	85	NM	180	treated	0
Pitie	gun	26	m	NR	NA	131	untreated	1
Beaujon	moto	63	m	80	3.9	145	treated	1
Pitie	moto	30	w	NR	Imp	107	untreated	0
HEGP	knife	16	m	98	2.5	118	treated	1

\Rightarrow Estimate causal effect: Administration of the treatment "tranexamic acid (TXA)" given within 3 hours of the accident, on the outcome 28 days intra hospital mortality (Y) for trauma brain patients. ${ }^{35}$

[^28]
Effect of tranexamic acid on in-ICU mortality

Model Treatment on Covariates $e(x)=\mathbb{P}\left(W_{i}=1 \mid X_{i}=x\right)$
Model Outcome on Covariates $\mu_{(w)}(x)=\mathbb{E}\left[Y_{i}(w) \mid X_{i}=x\right]$

Augmented Inverse Propensity Weighting - double robust

$$
\hat{\tau}_{A I P W}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\mu}_{(1)}\left(X_{i}\right)-\hat{\mu}_{(0)}\left(X_{i}\right)+W_{i} \frac{Y_{i}-\hat{\mu}_{(1)}\left(X_{i}\right)}{\hat{e}\left(X_{i}\right)}-\left(1-W_{i}\right) \frac{Y_{i}-\hat{\mu}_{(0)}\left(X_{i}\right)}{1-\hat{e}\left(X_{i}\right)}\right)
$$

$\hat{\tau}_{\text {AIPW }}$ is \sqrt{n}-consistent, asympt. normal with semi parametric variance given:
$\left.\mathbb{E}\left[\left(\hat{e}\left(X_{i}\right)^{(-i)}-e\left(X_{i}\right)\right)\right)^{2}\right]^{\frac{1}{2}} \times \mathbb{E}\left[\left(\hat{\mu}_{(W)}\left(X_{i}\right)^{(-i)}-\mu_{(W)}\left(X_{i}\right)\right)^{2}\right]^{\frac{1}{2}}=o\left(\frac{1}{\sqrt{n}}\right)$

x-axis: Estimat. of the Average Treatment Effect ($\times 100$), bootstrap Cl
AIPW with missing implemented in generalized random forest package grf

Generalization of trial's findings toward a target population ${ }^{39}$

\Rightarrow RCT gold standart to estimate treatment effect
Trial sample can be different from the population eligible for treatment
\Rightarrow Leveraging RCT and covariates from target population to transport the treatment effect estimated from the RCT to another population with a distributional shift (data fusion, recovery from selection biais), ${ }^{36,},{ }^{3738}$
\rightarrow Reduce drug approval times and costs for patients who could benefit
\rightarrow Prices depend on efficiency

			Covariates				Treat
Set	S	x_{1}	x_{2}	x_{3}	W	Y	
1	$\mathcal{R C \mathcal { T }}$	1	1.1	20	NA	1	24.1
	$\mathcal{R C \mathcal { T }}$	1	-6	45	NA	0	26.3
n	$\mathcal{R C \mathcal { T }}$	1	0	15	NA	1	23.5
$n+1$	Obs	$?$	-1	35	7.1		
$n+2$	Obs	$?$	-2	52	2.4		
	$\mathcal{O}\left\lfloor\int\right.$	$?$		\cdots			
$n+m$	Obs	$?$	-2	22	3.4		

[^29]
MNAR data: identifiability issues, few solutions in practice

Before estimation, we should prove the identifiability of the parameters
Example: Credit: llya Shpitser $X^{\mathrm{NA}}=[1, \mathrm{NA}, 0,1, \mathrm{NA}, 0]$
\triangleright Case 1: X missing only if $X=1$.

$$
X=[1,1,0,1,1,0], \mathbb{P}(X=1)=2 / 3
$$

\triangleright Case 2: X missing only if $X=0$.

$$
X=[1,0,0,1,0,0], \mathbb{P}(X=1)=1 / 3
$$

\Rightarrow Start from 2 equal observed distribution. It leads to different parameters of the data distribution $\mathbb{P}(X=1)$
Identifiability: the parameters of (X, M) are uniquely determined from available information $(X, M=0)$

Estimation: restrictive setting (few variables, only missing values on the outcome, simple models) ${ }^{404142}$

[^30]
Notations

- Random Variables:
$\triangleright X \in \mathbb{R}^{d}$: the complete unvailable data
$\triangleright \widetilde{X} \in\{\mathbb{R} \cup\{\mathrm{NA}\}\}^{d}$: incomplete data (observed), NA: Not Available
$\triangleright M \in\{0,1\}^{d}$: the missing-data pattern, the mask
obs (M) (resp. $\operatorname{mis}(M)$) indices of the observed (resp. missing) entries.
- Realizations:

$$
\begin{aligned}
& x=(1.1,2.3,3.1,8,5.27) \\
& \widetilde{x}=(1.1, \mathrm{NA},-3.1,8, \mathrm{NA}) \\
& m=(0,1,0,0,1) \\
& x_{\mathrm{obs}(\mathrm{~m})}=(1.1,3.1,8), \quad x_{\operatorname{mis}(\mathrm{m})}=(2.3,5.27)
\end{aligned}
$$

MCAR^{43} : For all $m \in\{0,1\}^{d}, P(M=m \mid X)=P(M=m)$
MAR 44 : For all $m \in\{0,1\}^{d}, P(M=m \mid X)=P\left(M=m \mid X_{o b s(m)}\right)$

[^31]
[^0]: $1_{\text {WWW.traumabase.eu }}$ - https://www.traumatrix.fr/

[^1]: $1_{\text {www.traumabase.eu }}$ - https://www.traumatrix.fr/

[^2]: ${ }^{2}$ Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.

[^3]: ${ }^{2}$ Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.

[^4]: ${ }^{3}$ Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)

[^5]: ${ }^{3}$ Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)

[^6]: ${ }^{3}$ Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)

[^7]: ${ }^{3}$ Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)

[^8]: ${ }^{4}$ Rubin. Inference and missing data. Biometrika. 1976.
 ${ }^{5}$ What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

[^9]: ${ }^{4}$ Rubin. Inference and missing data. Biometrika. 1976.
 ${ }^{5}$ What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

[^10]: ${ }^{6}$ Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
 ${ }^{7}$ Jiang, J. et al. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA. 2019. - Implementation in the misaem package

[^11]: ${ }^{6}$ Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
 ${ }^{7}$ Jiang, J. et al. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA. 2019. - Implementation in the misaem package

[^12]: ${ }^{6}$ Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
 ${ }^{7}$ Jiang, J. et al. Logistic Regression with Missing Covariates, Parameter Estimation, Model Selection and Prediction. CSDA. 2019. - Implementation in the misaem package

[^13]: ${ }^{8}$ J. \& Husson. missMDA: Handling Missing Values in Multivariate Data Analysis, JSS. 2016.

[^14]: ${ }^{9}$ J. \& Sardy. Adaptive Shrinkage of singular values. Stat \& Computing. 2015.
 ${ }^{10}$ J. \& Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
 ${ }^{11}$ Robin, Klopp, J., Moulines, Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. JASA.
 ${ }^{12}$ J. et al. Imputation of mixed data with multilevel SVD. JCGS. 2018.
 ${ }^{13}$ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.

[^15]: ${ }^{9}$ J. \& Sardy. Adaptive Shrinkage of singular values. Stat \& Computing. 2015.
 ${ }^{10}$ J. \& Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
 ${ }^{11}$ Robin, Klopp, J., Moulines, Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. JASA.
 ${ }^{12}$ J. et al. Imputation of mixed data with multilevel SVD. JCGS. 2018.
 ${ }^{13}$ Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.

[^16]: ${ }^{14} \mathrm{~J}$. et al. Multiple imputation in principal component analysis. ADAC. 2011.

[^17]: ${ }^{15}$ Bogdan, J. et al. Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing Values. Journal of Computational and Graphical Statistics. 2020.

[^18]: ${ }^{15}$ Bogdan, J. et al. Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing Values. Journal of Computational and Graphical Statistics. 2020.

[^19]: ${ }^{16}$ Rosenbaum \& Rubin. (1984). Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. JASA.

[^20]: ${ }^{16}$ Rosenbaum \& Rubin. (1984). Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. JASA.

[^21]: ${ }^{18}$ Le morvan, J. et al. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020 (Oral).

[^22]: ${ }^{19}$ Vovk, et al. Algorithmic Learning in a Random World. Springer US, 2005.

[^23]: ${ }^{19}$ Vovk, et al. Algorithmic Learning in a Random World. Springer US, 2005.
 ${ }^{20}$ Wager, J., Doubly robust estimation with incomplete confounders. Ann. Appl. Stat. 2020.
 ${ }^{21}$ Colnet, J. et al. Generalization: sensitivity analysis \& missing data. Journal of causal inf. 2022.
 ${ }^{22}$ Mayer \& J. Generalizing treatment effects with incomplete covariates. 2022.
 ${ }^{23}$ Colnet, J. et al. Reweighting RCT for generalization: finite sample analysis \& var. select. 2022.

[^24]: ${ }^{19}$ Vovk, et al. Algorithmic Learning in a Random World. Springer US, 2005.
 ${ }^{20}$ Wager, J., Doubly robust estimation with incomplete confounders. Ann. Appl. Stat. 2020.
 ${ }^{21}$ Colnet, J. et al. Generalization: sensitivity analysis \& missing data. Journal of causal inf. 2022.
 ${ }^{22}$ Mayer \& J. Generalizing treatment effects with incomplete covariates. 2022.
 ${ }^{23}$ Colnet, J. et al. Reweighting RCT for generalization: finite sample analysis \& var. select. 2022.

[^25]: ${ }^{24}$ Robin, J., Moulines Sardy. 2019. Low-rank model with covariates for count data with missing values. Journal of Multivariate Analysis.
 ${ }^{25}$ Robin, Klopp, J., Moulines Tibshirani. Main effects and interactions in mixed and incomplete data frames. 2019. JASA.

[^26]: ${ }^{27}$ Le morvan, J. et al. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020 (Oral).

[^27]: ${ }^{29}$ Wager, J., Doubly robust estimation with incomplete confounders. Ann. Appl. Stat. 2020.
 ${ }^{30}$ Colnet, J. et al. (2021). Causal inference for combining RCT \& obs. studies: a review.
 ${ }^{31}$ Mayer \& J. Generalizing treatment effects with incomplete covariates. 2022.
 ${ }^{32}$ Colnet, J. et al. Generalization: sensitivity analysis \& missing data. Journal of causal inf. 2022.
 ${ }^{33}$ Colnet, J. et al. Reweighting RCT for generalization: finite sample analysis \& var. select. 2022.

[^28]: ${ }^{34}$ www.traumabase.eu - https://www.traumatrix.fr/
 ${ }^{35}$ Mayer, Wager, J. Doubly robust treatment effect estimation with incomplete confounders.
 Annals Of Applied Statistics. 2020.

[^29]: 36 Mayer \& J. Generalizing treatment effects with incomplete covariates. Archiv. 2022.
 ${ }^{37}$ Colnet, J. et al. Generalizing a causal effect: sensitivity analysis and missing covariates. Journal of causal inference. 2022.
 ${ }^{38}$ Colnet, J. et al. Reweighting RCT for generalization: finite sample analysis \& var. select. 2022.
 ${ }^{39}$ Colnet, J. et al. (2021). Causal inference for combining RCT \& obs. studies: a review.

[^30]: ${ }^{40}$ Ibrahim, et al. Missing covariates in glm when the mechanism is non-ignorable. JRSSB. 1999.
 ${ }^{41}$ Tang. Statistical inference for nonignorable missing-data. Statistic. theory \& rel. fields. 2018.
 ${ }^{42}$ Mohan, Thoemmes, Pearl. Estimation with incomplete data: The linear case. IJCAI. 2018.

[^31]: ${ }^{43}$ Michel, Naf, Spohn, Â ${ }^{*}$ Meinshausen. 2021. PKLM: a flexible mcar test using classification.
 ${ }^{44}$ What Is Meant by "Missing at Random"? Seaman, et al. Statistical Science. 2013.

