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(Online) Decision support tool with quantified uncertainty

Ex: Traumatrix project1: Reducing under and over triage for improved resource

allocation in trauma care

Major trauma: brain injuries or hemorrhagic shock from car accidents, falls,

stab wounds, etc. ⇒ requires specialized care/resources in ”trauma centers”

Many patients are misdirected: human/ economical costs

Clinical trial launched in 2025: real-time implementation of Machine Learning

models in ambulance dispatch via a mobile data collection application

1www.traumabase.eu - https://www.traumatrix.fr/ 2



Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

▷ 40000 trauma patients

▷ 300 heterogeneous features from pre-hospital and in-hospital settings

▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Weight Lactacte Blood TXA. Y

Press.

Beaujon fall 54 m 85 NA 180 treated 0

Pitie gun 26 m NA NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NA NA 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect (with missing values2): Administration of the

treatment tranexamic acid (TXA), given within 3 hours of the accident, on the

outcome (Y ) 28 days in-hospital mortality for trauma brain patients

2Mayer, I., Wager, S. & J.J. (2020). Doubly robust treatment effect estimation with incomplete

confounders. Annals Of Applied Statistics. (implemented in package grf). 3



Causal inference: ”what would happen if?”

Potential Outcome framework (Neyman, 1923; Rubin, 1974)

▷ ( X︸︷︷︸
covariates

,

treatment︷︸︸︷
W , Y (1),Y (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

▷ Individual causal effect of the binary treatment: ∆i = Yi (1)− Yi (0)

Problem: ∆i never observed (only one outcome is observed per indiv.)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

ATE with Risk Difference: difference of the average outcome had everyone

gotten treated and the average outcome had nobody gotten treatment 4



Data sources & evidences to estimate the treatment effect

Randomized Controlled Trial (RCT)

▷ gold standard (allocation )

▷ same covariate distributions in

treated and control groups

⇒ High internal validity

▷ expensive, long, ethical limitations

▷ small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

▷ trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

▷ “big data”: low quality

▷ lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

▷ low cost

▷ large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

▷ representative of the target

populations

⇒ High external validity
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Leverage both RCT and observational data

RCT

+ No confounding

− Trial sample different from the population

eligible for treatment

(big) Observational data

− Confounding

+ Representative of the target

population

We can use both to 3 . . .

▷ . . . validate observational methods, correct for confounding bias

▷ . . . improve estimation of heterogeneous treatment effects

▷ . . . generalize the treatment effect to a target population (data

fusion, transportability, recovery from selection bias)4,5

The FDA has greenlighted the usage of the drug Ibrance to men with

breast cancer, though clinical trials were performed only on women.

→ Reduce drug approval times and costs

3Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. Statistical Science.
4Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. PNAS.
5Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for

Extending Causal Inferences From a RCT to a Target Population American J. of Epidemiology.
6
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Predicting treatment effects from 1 trial to another population

Bénédicte Colnet (Corps des Mines, French social security’s direction), Imke Mayer (Owkin)

Erwan Scornet (X - Sorbonne Université), Gaël Varoquaux (Inria) 7



Generalization task from one RCT to a target population

Two data sources:

▷ A trial of size n with pR (x) the

probability of observing individual

with X = x ,

▷ A sample of the target population

of interest – for e.g. a national co-

hort (resp. m and pT (x)).

Covariates distribution not the same in the RCT & target pop:

pR(x) ̸= pT(x) ⇒ τR := ER[Y (1)− Y (0)]︸ ︷︷ ︸
ATE in the RCT

̸= ET[Y (1)− Y (0)] := τT︸ ︷︷ ︸
Target ATE
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Assumptions for ATE identifiability in generalization

Overlap assumption6

∀x ∈ X, pR(x) > 0 and supp(PT (X )) ⊂ supp(PR(X ))

The observational covariates support is included in the RCT’s support. Every

individual in the target population could have been selected into the trial

Transportability (Ignorability on trial participation)7

∀w ∈ {0, 1} ER[Y (w) | X ] = ET[Y (w) | X ]

Corresponds to shifted prognostic variables

6If this is too strong, we could generalize on a different target population: the target population

for which eligibility criteria of the trial are ensured
7Equivalent formulation with sampling mechanism S (S = 1 trial eligibility & willingness to

participate) in non-nested design, {Y (1),Y (0)} ⊥⊥ S | X

9
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Generalization of conditional outcome: identifiability

Set S X1 X2 X3 W Y (0) Y(1)

1 R 1 1.1 20 5.4 1 ? 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3 ?

n R 1 0 15 6.2 1 ? 23.5

n + 1 O ?(0) -2 52 7.1 NA NA NA

n + 2 O ?(1) -1 35 2.4 NA NA NA

. . . O ?(0) . . . NA NA NA

n + m O ?(1) -2 22 3.4 NA NA NA

Set S X1 X2 X3 W Y

1 R 1 1.1 20 5.4 1 24.1

. . . R 1 . . . . . . . . .

n − 1 R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O NA -2 52 7.1 NA NA

n + 2 O NA -1 35 2.4 NA NA

. . . O NA . . . NA NA

n + m O NA -2 22 3.4 NA NA

Data with observed treatment W and outcome Y only in the RCT.

Average Treatment Effect: τT = ET[Yi (1)− Yi (0)],∀w ∈ {0, 1}

ET [Y (w)] = ET [ET [Y (w) | X ]] Law of total expectation

= ET [ER [Y (w) | X ]] Ignorability

= ET [ER[Y (w) | X = x ,W = w ]] Random treatment

= ET [ER[Y | X = x ,W = w ]]︸ ︷︷ ︸
µw (x)

ConsistencyY = Y (1)W + (1−W )Y (0)

Regression adjustment - plug-in gformula

τ̂g ,n,m =
1

m

∑
i∈T

(µ̂1,n(Xi )− µ̂0,n(Xi ))

10
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Plug-in gformula: difference between conditional mean

Plug-in gformula

τ̂g ,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

µw (x) = ER[Y | X = x ,W = w ]

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 9.4 1 24.1

R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• Fit two models of the outcome (Y ) on covariates (X )

among trial participants (R) for treated and for control to get µ̂1,n & µ̂0,n

• Apply these models to the covariates in the target pop , i.e., marginalize

over the covariate distribution of the target pop, gives the expected outcomes

• Compute the differences between the expected outcomes on the target

population µ̂1,n(·) - µ̂0,n(·)

11
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Assumptions for ATE identifiability in generalization

Overlap assumption8

∀x ∈ X, pR(x) > 0 and supp(PT (X )) ⊂ supp(PR(X ))

The observational covariate support is included in the RCT’s support. Every

individual in the target population could have been selected into the trial

Transportability of the conditional average treatment effect

(CATE)9

ER[Y (1)− Y (0) | X ]︸ ︷︷ ︸
τR (X )

= ET[Y (1)− Y (0) | X ]︸ ︷︷ ︸
τT(X )

Need to know which variables are shifted treatment effect modifiers

The treatment effect depends on covariates in the same way in the source

(RCT) and target population

8If this is too strong, we could generalize on a different target population: the target population

for which eligibility criteria of the trial are ensured
9Equivalent formulation (non-nested case) with sampling mechanism S: (Y (1) − Y (0)) ⊥⊥ S | X 12



Identifiability and estimation for generalization: weighting

Generalization of local effects (i.e. conditional effects/strata)

τT = ET[Yi (1)− Yi (0)] = ET[ET[Yi (1)− Yi (0)|X ]]

= ET [τT(X )] = ET [τR(X )] Transportability CATE

= ER

[
pT(X )

pR(X )
τR(X )

]
Overlap

IPSW: inverse propensity sampling weighting

τ̂π,n,m =
1

n

∑
i∈R

pT(Xi )

pR(Xi )
Yi

(
Wi

π
− 1−Wi

1− π

)
,

π proba. of treatment assignment in trial

Re-weight, so that the trial follows the target sample’s distribution

Re-weighting can be found in the 2000’s (standardization)10

Idea of relying on an external representative sample to reweight is

recent11

10Rothman & Greenland (1998). Modern Epidemiology.
11Cole & Stuart. (2010). Generalizing from RCT to target pop. American J. of Epidemiology.

13



Reweighting the RCT: reweight Horvitz-Thomson

τ̂π,n,m = 1
n

∑
i∈R

pT (X )
pR (X ) Yi

(
Wi

π − 1−Wi

1−π

)
• Estimate the ratio of densities12

▷ with parametric densities (i.e. Gaussian)

▷ with a parametric model for the ratio

▷ with logistic regression

r(X ) :=
pT (X )

pR(X )
=

P(X = x |S = 0)

P(X = x |S = 1)

=
P(S = 1)P(S = 0|X = x)

P(S = 0)P(S = 1|X = x)

∀x ∈ X , r̂(x) =
n/(n +m)

m/(n +m)

1− σ̂(x ,βn+m)

σ̂(x ,βn+m)

where x ∈ X , σ(x ,β) =
(
1 + exp(−x⊤β)

)−1
.

• Case with categorical features: finite sample & asymptotic analysis13

12Kanamori, et al. (2010). Theoretical analysis of density ratio estimation. IEICE transactions.
13Colnet, J.J (2022). Reweighting the RCT: finite sample analysis & variable selection. JRSSA.

14



Generalization from Crash 3 trial14 to the Traumabase

CRASH3

▷ Multi-centric RCT - 29 countries

▷ 9000 individuals - develp. countries

▷ Positive effect for moderately

injured patients

Traumabase

▷ Observational sample

▷ 8200 patients with brain trauma

▷ Deleterious/No evidence for an

effect of Tranexomic Acid
Comparison of trials, observational data, and generalization estimates

x-axis: Estimation of the Average Treatment Effect, Confidence intervals with bootstrap

y -axis: Estimation methods (estimation of nuisances: parametric: logistic regression - non

parametric: forests)
14(2019). Effects of tranexamic acid on death in patients with acute trauma. brain injury. Lancet.

15



Many medical and statistical challenges

• 1) Shifted effect modifiers not available in Traumabase15. Missing covariates

in one/both sets: sensitivity analysis

Covariates Treat Outcomes

Set S X1 X2 X3 W Y

1 R 1 1.1 20 NA 1 24.1

R 1 -6 45 NA 0 26.3

n R 1 0 15 NA 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• 2) Missing values: Missing values (NA) in both RCT and Obs data16

• 3) Which covariates should be include? Would adding prognostic variables

reduce the variance as in the classical case?17

• 4) Clinicians are more interested in the risk ratio than the risk difference18

15Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. J. of Causal Inference.
16Mayer, J.J. 2021. Generalizing effects with incomplete covariates Biometrical Journal.
17Colnet, J.J et al. 2023. Reweighting the RCT for generalization: finite sample analysis and

variable selection. JRSSC.
18Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize? 16
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Comparing two average situations

Binary outcome: P [Y (w) = 1] = E [Y (w)] and P [Y (w) = 0] = 1− E [Y (w)].

Absolute measures

τ RD := E [Y (1)]− E [Y (0)] , τNNT := (τ RD)−1.

• Number Needed to Treat (NNT): how many individuals should be treated

to observe one individual answering positively to treatment.

Relative measures

τ RR :=
E [Y (1)]

E [Y (0)]
, τ SR :=

P [Y (1) = 0]

P [Y (0) = 0]
=

1− E [Y (1)]

1− E [Y (0)]
,

τOR :=
P[Y (1) = 1]

P[Y (1) = 0]

(
P[Y (0) = 1]

P[Y (0) = 0]

)−1

• A null effect now corresponds to a Risk Ratio of 1

• Survival Ratio (SR) corresponds to the RR with swapped labels Y

• RR is not symmetric to the choice of outcome 0 and 1 –e.g. counting the

living or the dead while Odds Ratio (OR) is
17



Different treatment measures give different impressions

An example: Randomized Control Trial (RCT) from Cook and Sackett (1995)

• Y = 1 stroke in 5 years and Y = 0 no stroke

• W antihyperintensive therapy

• Feature X (blood pressure), X = 1 low baseline risk (15/1000 versus 2/10)

P [Y (0) = 1 | X = 0] ≥ P [Y (0) = 1 | X = 1]

τRD τRR τSR τNNT τOR

All (PR) -0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

• RD: treatment reduces by 0.045 the probability to suffer from a stroke

• RR: the treated has 0.6 × the risk of having a stroke comp. with the control

• SR: increased chance of not having a stroke when treated (factor 1.05).

• NNT: one has to treat 22 people to prevent one additional stroke

• OR ≈ RR in a stratum where prevalence of the outcome is low

18



Different treatment measures give different impressions

An example: Randomized Control Trial (RCT) from Cook and Sackett (1995)

• Y = 1 stroke in 5 years and Y = 0 no stroke
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• Feature X (blood pressure), X = 1 low baseline risk (15/1000 versus 2/10)
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τRD τRR τSR τNNT τOR

All (PR) -0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

• RD is heterogeneous with X while RR is homogeneous with X

• Heterogeneity’s property defined w.r.t. (i) covariates & (ii) a measure

• Impact of the baseline risk: with 3% baseline mortality reduced to 1% by

treatment, RD shows a 0.02 drop, while RR shows controls have three times

the risk: RD suggests a small effect; RR highlights a larger one
18



Formalization of causal measures’s properties: toward guidance

19



A desirable property: collapsibility

Collapsibility19: Population’s effect is equal to a weighted sum of local

effects (conditional effects)

Direct collapsibility - weights are equal to population’s proportions

τ = E [τ(X )]

• Risk Difference is directly collapsible

τRD τRR τSR τNNT τOR

All (PR) −0.0452 0.6 1.05 22 0.57

X = 1 −0.006 0.6 1.01 167 0.6

X = 0 −0.08 0.6 1.1 13 0.545

τ RD

R = pR(X = 1)× τ RD

R (X = 1) + pR(X = 0)× τ RD

R (X = 0)

−0.0452 = −0.47× 0.006− 0.53× 0.08.

Useful for generalization! (replacing pR by pT)
19Greenland (1987), Hernan et al. (2011), Huitfield et al. (2019), Didelez & Stensrud (2022), etc. 20



A desirable property: collapsibility

Collapsibility: Population’s effect is equal to a weighted sum of local

effects (conditional effects)

Collapsibility: weights depend on the baseline distribution Y (0)

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

• Risk Ratio is collapsible:

E
[
τRR(X )

E [Y (0) | X ]

E [Y (0)]

]
= τRR

• Estimation challenges: No methods or theoretical properties for RR in

RCTs & observational data. In Boughdiri, et al (2024)20 we propose:

Weighting & outcome modeling estimators (asymptotic & finite-sample

analyses) + Two doubly robust estimators via semi-parametric theory.

20Boughdiri, J.J., Scornet. (2024). Estimating Risk Ratios in Causal Inference. Submited.
21



Summary of causal measure properties

Direct collapsibility

E [τ(X )] = τ

Collapsibility: weights depend on the baseline distribution Y (0)

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

Logic respecting (Simpson paradox)

τ ∈
[
min
x
(τ(x)),max

x
(τ(x))

]
.

Ex. OR: Overall population, τOR ≈ 0.26 τOR|F=1 ≈ 0.167 and τOR|F=0 ≈ 0.166

Measure Dir. collapsible Collapsible Logic-respecting

Risk Difference Yes Yes Yes

Number Needed to Treat No No Yes

Risk Ratio No Yes Yes

Survival Ratio No Yes Yes

Odds Ratio No No No
22



Back to generalizability from one RCT to a Target pop.

X W

0
1
0

Y

0
0
1

X

PR PT

Y(0)
0 1

1
0
1

1

Sampled from Sampled from

Populations

Data

We consider set-ups where control outcome is observed or not

 Target Sample Trial Sample (RCT)

23



Back to generalizability from one RCT to a Target pop.

Generalizing Conditional Outcome Local effects/CATE

Assumption ER[Y (w) | X ] = ET[Y (w) | X ] τR(X ) = τT(X )

Variables All shifted prognostic covariates All shifted effect modifiers

Identification ET [Y (w)] = ET [ER [Y (w) | X ]] ER

[
pT(X )
pR(X )

wT(Y (0),X ) τR(X )
]

Estimation Ex: Regression (G-formula) Ex: Weighting

• Generalize local effects only for collapsible measures, need info. on Y (0)

• Generalizing conditional outcome require stronger assumptions

• Depending on the underlying DGP assumption & direction of the effects,

some measure disantangle baseline risk from effect modifiers21

21Colnet, J.J, et al. (2024). Risk ratio, odds ratio, risk difference... Which causal measure is easier

to generalize? 23



Generalization of a first moment population-level estimands

Let P(Y (0),Y (1)) the joint distribution of the potential outcomes.

• τP a 1st moment population-level22 measure if ∃ Φ : DΦ → R, DΦ ⊂ R2

Φ (EP [Y (1)],EP [Y (0)]) = τPΦ

Measure Effect Measure Domain DΦ

Risk Difference (RD) Φ(x , y) = x − y R2

Risk Ratio (RR) Φ(x , y) = x
y

R× R∗

Odds Ratio (OR) Φ(x , y) = x
1−x

· 1−y
y

R/{1} × R∗

NNT Φ(x , y) = 1
x−y

{(x , y) ∈ R2|x + y ̸= 0}

• An individual-level measure depends on the joint distribution. Considered non

identifiable but workarounds exist23. Ex: E
[
Yi (1)
Yi (0)

]
̸= E[Yi (1)]

E[Yi (0)]

22Fay & Li. (2024). Causal interpretation of the hazard ratio in RCTs. Clinical Trials.
23Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis. 24



Generalization of first moment population-level estimands

Identifiability formulae

ET [Y (w)] = ER

[
pT (X )

pR(X )
Y (w)

]

Estimator: Oracle Re-weighted Horvitz-Thomson

τ̂π,n,m,σ
Φ = Φ

(
1

n

n∑
i=1

r(Xi )
YiWi

π
,
1

n

n∑
i=1

r(Xi )
Yi (1−Wi )

1− π

)
,

√
(n +m)

(
τ̂π,n,m,σ
Φ − τTΦ

) d→ N (0,V π,α,σ
Φ )

Measure Variance

Risk Difference (RD)
1

α

ET

[
r(X )(Y (1))2

]
π

+
ET

[
r(X )(Y (0))2

]
1 − π

− (τT
RD )

2


Risk Ratio (RR)

(τT
RR )

2

α

ET

[
r(X )(Y (1))2

]
πET

[
Y (1)

]2 +
ET

[
r(X )(Y (0))2

]
(1 − π)ET

[
Y (0)

]2


Odds Ratio (OR)
(τT

OR )
2

α

ET

[
r(X )(Y (1))2

]
π(ET [Y (1)])2

+
ET

[
r(X )(Y (0))2

]
(1 − π)(ET [Y (0)])2

− 1


Number Needed to Treat (NNT)

(τT
NNT )

4

α

ET

[
r(X )(Y (1))2

]
π

+
ET

[
r(X )(Y (0))2

]
1 − π

−
1

(τT
NNT )

2


25



Generalization of RD, RR and OR

Under assumption ER[Y (w) | X ] = ET[Y (w) | X ]

• YR(w) = c(w) + XRβ(w) + ϵR(w)

• XR ∼ N (µR,Σ)

• XT ∼ N (µT,Σ)
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GFormula (Transported)
Doubly Robust
Target Effect
Source Effect
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Generalization of RD, RR and OR
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From one to multiple Randomized Control Trials (RCTs)

Meta-analysis (aggregating estimated effects from multiple studies) is at

the top of the pyramid of evidence based medicine.

Meta-analysis still faces significant challenges:

• Be careful with aggregation of causal measures (Odds Ratio?)

• Heterogeneity across studies: sample size, population, center effects

• Difficulty to share individual-level data: data silos & regulations 27



Going beyond meta-analysis with federated causal inference25

Bridging causal inference and federated learning to improve treatment

effect estimation from decentralized data sources

Going beyond meta-analysis on individual data24

24 Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not

two-stage? Stat. Med.
25 Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. AISTAT.
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Federated Averaging (FedAvg) for Linear Regression

Linear Regression

Y = Xβ + ε. Estimate β by minimizing the MSE:

argminβℓ(β;Xi ,Yi ) with ℓ(β;Xi ,Yi ) =
1

n

n∑
i=1

(Yi − Xiβ)
2

Gradient Descent (GD)

1. Initialize β0 with zeros

2. Update βt+1 := βt − η∇ℓ(βt), ∇ℓ(βt) = − 2
n

∑n
i=1 X

′
i (Yi − Xiβ)

3. Repeat for L steps until convergence

Choices: learning rate η & L to get β̂GD ≈ β̂OLS, equality as L → ∞.

η < 2
L , L the smoothness const., the highest eigenvalue λmax of X⊤X

29



Federated Averaging (FedAvg) for Linear Regression

Linear Regression

Y = Xβ + ε. Estimate β̂FedAvg by minimizing:

argminβ

K∑
k=1

nk
n
ℓk(β) with ℓk(β) =

1

nk

nk∑
i=1

(Y k
i − X k

i β)
2

Federated Learning extends GD to a distributed setting

1. Initialize on central server β0 with zeros (globally shared)

2. For each communication round t = 1, . . . ,T :

• Each site k = 1, . . . ,K performs L = 1 gradient step on its data:

βk
t+1 := βk

t − η∇ℓk(β
k
t ) with ∇ℓk(β

k
t ) = − 2

nk

∑nk
i=1 X

′k
i (Y k

i − X k
i β)

• Parameters sent to the server for aggregation: βt+1 :=
1
K

∑K
k=1 β

k
t+1

Choices: learning rate η, communication T & L.

T = 1 & L → ∞: One-shot federated learning, meta analysis on β 29



Our setting: decentralized heterogeneous RCTs

We consider K decentralized and potentially heterogeneous RCTs

(studies) from different sources and want to estimate the ATE given by

τ = E
(
E(Y (1) − Y (0) | H)

)
Source Obs. Covariates Treat. Outcome

H i X1 X2 X3 W Y

1 1 2.3 1.5 M 1 3.2

1 2 2.2 3.1 F 0 2.8
...

...
...

...
...

...
...

2 1 4.5 5.0 F 1 4.1
...

...
...

...
...

...
...

K 1 3.7 2.0 F 0 2.8
...

...
...

...
...

...
...

K nK 2.5 1.7 M 0 3.2

hehr

in

W

X

Y

H

How to estimate τ without pooling together individual-level data?
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Three types of federated estimators - collapsible measures (RD)

Ex: linear outcome model for all studies ∀k: Y (w)
k,i = c (w) + Xk,iβ

(w) + ε
(w)
k,i

Baseline: estimator τ̂pool =
1
n

∑n
i=1 X

′
i (θ̂

(1)
pool − θ̂

(0)
pool) on pooled data

θ̂
(w)
pool = (ĉ

(w)
pool, β̂

(w)
pool) =

(
X ′(w)⊤

X ′(w))−1
X ′(w)⊤

Y (w) with X ′(w)
= [1,X (w)]

Meta analysis

Aggregation wk : sample size weights (SW) or inverse variance weights (IVW) 31
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Statistical perf. & communication costs

W

X

YH

Heterogeneity: Source

membership H only affects

treatment allocation:

Wk,i ∼ B(pk)

Unbiased estimators but different asymptotic variance & communication costs:

Estimator V∞ Com. rounds Com. cost

τ̂Meta-SW
σ2

n

K∑
k=1

ρk

pk (1 − pk )
+

1

n
∥β(1)−β

(0)∥2
Σ 1 O(1)

τ̂Meta-IVW

( K∑
k=1

(
σ
2 nρk

pk (1 − pk )
+

1

nk
∥β(1)−β

(0)∥2
Σ

)−1
)−1

1 O(1)

τ̂1S-SW Vpool 2 O(d)

τ̂1S-IVW Vpool 2 O(d2)

τ̂GD Vpool T + 1 O(Td)

τ̂pool Vpool =
σ2

n
1

p(1−p)
+ 1

n
∥β(1) − β(0)∥2Σ — —

with ρk = P(H = k) and p =
∑K

k=1
nk
n
pk
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Numerical illustration

• K = 5 studies, d = 10 variables, nk = 5d observation/study

• Treatment allocation p1 = p2 = p3 = 0.9, p4 = p5 = 0.1
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0.8
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E
st

im
at

io
n

g_formula for RCT, pk, small setting

pool meta_SW meta_IVW 1S_IVW 1S_SW GD True Tau
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Heterogeneity in covariates distributions

W

X

Y

H

▷ Distributional shift across sources: H ̸⊥⊥ X =⇒ τk ̸= τk′

▷ Global ATE is given by τ =
∑K

k=1 ρkτk with ρk = P(H = k)

Summary of results

▷ τ̂meta−IVW is biased because inverse variance weights give biased esti-

mates of the ρk

▷ V∞(τ̂pool)=V∞(τ̂GD)=V∞(τ̂1S−IVW)≤V∞(τ̂meta−SW)

▷ τ̂1S−SW is robust to heterogeneous covariances {Σk}k but has larger

variance for different means {µk}k

34



Numerical illustration

Xk ∼ N (µk ,Σk)

More data (nk = 100d) Less data (nk = 5d)
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Heterogeneity from Center Effects

W

X

Y

H

▷ Studies may have varying practices or organizational contexts

▷ Model: fixed effect of the source H onto the outcome Y :

Y
(w)
k,i = c(w) + hk + Xk,iβ

(w) + εi (w)

Note: CATEs E[Y (1)− Y (0)|X ,H] are the same/sources

▷ Caution: H is now a confounder

Summary of results

▷ τ̂meta−SW and τ̂meta−IVW naturally account for the center effects

▷ Other federated estimators are biased and need to be adjusted. GD

estimators: add H as an additional covariate
36



Numerical illustration

More data (nk = 100d) Less data (nk = 5d)
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g_formula for RCT, hk, pk no adj., small setting

pool meta_SW meta_IVW 1S_IVW 1S_SW GD True Tau
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Numerical illustration

More data (nk = 100d) Less data (nk = 5d)

1S-SWPool Meta-SW GD1S-IVWMeta-IVW Adjusted True tau
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Summary: decision diagram for practitioners

Federated RCTs: Guidelines Meta & GD predilection regimes

▷ Small sample size: Gradient Descent: other need n
(w)
k ≥ d for k,w

▷ Heterogeneity: Shift across sources (τ̂meta−IVW biased); different

baseline outcomes (τ̂meta handles center effects, τ̂GD needs adjustmen-

t/prior knowledge on the model)

▷ Non collapsibility: GD (step 2: estimate local E[Y (w)])
38



Federated Causal Inference/Generalization

Similarity between both problems

▷ FL: Target population defined as a mixture of K sites

▷

▷

Federated IPW for observational data

e(Xi ) =
K∑

k=1

P(Hi = k ∩Wi = 1 | Xi ).

e(Xi ) =
K∑

k=1

ρk
P(Xi | Hi = k)

P(Xi )︸ ︷︷ ︸
density weights

ek(Xi ).
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Federated Causal Inference/Generalization

Similarity between both problems

▷ FL: Target population defined as a mixture of K sites

▷ Same assumptions of transportability

▷ Same dichotomy of approaches between collapsible/non collapsible mea-

sures

Federated IPW for observational data

e(Xi ) =
K∑

k=1

P(Hi = k ∩Wi = 1 | Xi ).

e(Xi ) =
K∑

k=1

ρk
P(Xi | Hi = k)

P(Xi )︸ ︷︷ ︸
density weights

ek(Xi ).
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Future work: Multiple RCTs & Multiple Observational data
RCT 1

X1 X2 X3 X4 X5 W Y

RCT 2
X1 X2 X3 X4 X5 X6 W Ÿ

OBSERVATIONAL DATA A
X1 X2 X3 X4 X5 X6 X7 X8 W Y

Ho
sp

ita
l 1

Ho
sp

ita
l 2

Ho
sp

ita
l 3

OBSERVATIONAL DATA B
X1 X2 X3 X4 X5 X6 X7 X8 OBSERVATIONAL DATA C

X1 X2 X3 X4 X5 X6 X7 X8 AUXILIARY DATA
S1 S2 S3 S4

TARGET 
POPULATION

TREATMENT
ESTIMATE(S)

NEW PATIENTS TO TREAT
X1 X2 X3 X4 X5 X6 X7 X8 W

black correspond to sporadically & systematic missing covariates

• Implementation of a package

• Extension to population-level measures and individual-level ones26

• Complex outcome/treatment/features distributions, survival, time

• Federated Random Forests

• Provide robust privacy guarantees (differential privacy)

Clément Berenfeld, Ahmed Boudghiri, Rémi Khellaf, Aurelien Bellet, Erwan Scornet (Sorbone)

26Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis 40



Policy learning for personalized treatment

▷ Policy estimation

⋄ Counterfactual outcome estimation/CATE: T-learners, R-learner,

X-learner, DR-learner, Causal Forest, etc.

⋄ Direct treatment rule estimation approach: Single stage outcome weighted

learning, weighted classification

▷ Policy evaluation: Substitution estimator, AIPW, TMLE value

⇒ + Choice of learners (parametric/non param., etc) /software/ missing
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Policy learning for personalized treatment

▷ Policy estimation

⋄ Counterfactual outcome estimation/CATE: T-learners, R-learner,

X-learner, DR-learner, Causal Forest, etc.

⋄ Direct treatment rule estimation approach: Single stage outcome weighted

learning, weighted classification

▷ Policy evaluation: Substitution estimator, AIPW, TMLE value

⇒ + Choice of learners (parametric/non param., etc) /software/ missing

Recommended optimal dose never matched the one prescribed by the MD!
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Identifying Gaps in the Literature

Mihaela’s Quote:

”A big part in a researcher’s workflow is to identify gaps in the literature.”

▷ Question: Should we also focus on consolidation?

⋄ Too many methods and papers, leading to an overwhelming number

of choices.

⋄ Users are lost in the multitude of options available.

▷ Gap Between Theory and Practice:

⋄ Many theoretical advancements do not translate effectively into

practice.

▷ Incentive Structures:

⋄ Need for incentives for sustained/maintained software beyond just

hosting code on GitHub.

⋄ Incentive for consolidation?
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Importance of Careful Design Over New Methods

Key Considerations:

▷ Careful design is more critical than merely creating new methods.

▷ Which data should be collected?

Example 1: In Vitro Fertilization (IVF)

▷ Goal: Find the optimal dose of gonadotropin to maximize oocyte size.

▷ Question: Can we expect reliable results without understanding the

patient’s psychological state?

Example 2: Personalized Medicine

▷ Goal: Determine the best treatment for each individual.

▷ Observation: In oncology, similar profiles can have vastly different

treatment outcomes.

▷ Hypothesis: External factors (e.g., exercise, acupuncture, dietary

supplements, hypnosis) could influence outcomes.

▷ Conclusion: We must encourage the collection of such additional

information. 43



The Limits of AutoML

Question: Can we rely on AutoML?

▷ Lack of Contextual Information:

⋄ Important information is missing from datasets, which is often

uncovered through collaborative discussions.

⋄ This context affects how data is coded and interpreted.

▷ Examples:

⋄ Distribution changes in gravity scores due to funding tied to patient

severity.

⋄ Missing values due to team disagreements; Orientation depends of

trust/reputation

Context is crucial to access algorithms. Go beyond the model: what is

its impact on all stakeholders?

Mihaela’s Quote:

”Having clear communication between both parties may avoid researchers

wasting valuable resources and time on problems that need not be

solved.” 44



Generalization of first moment population-level estimands

Transportability (Ignorability on trial participation)

∀w ∈ {0, 1} ER[Y (w) | X ] = ET[Y (w) | X ]

Identifiability formulae

ET [Y (w)] = ET [ER [Y (w)|X ]]

Estimator: G-formula transported

τ̂Φ,G = Φ

(
1

m

m∑
i=1

µR
(1)(Xi ),

1

m

m∑
i=1

µR
(0)(Xi )

)

Estimator: Doubly robust

τ̂π,βΦ,DR = Φ
(
Ỹ (1), Ỹ (0)

)
Ỹ (w) =

1

m

m∑
i=1

µR
(w)(Xi ) +

1

n

n∑
i=1

r(Xi ,β)1Wi=w

Yi − µR
(w)(Xi )

PR(W = w)
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Generalization of RD, RR and OR

Under assumption ER[Y (w) | X ] = ET[Y (w) | X ]

• YR(w) = c(w) + XRβ(w) + ϵR(w)

• XR ∼ N (µR,Σ)

• XT ∼ N (µT,Σ)
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46



Generalization of RD, RR and OR

Under assumption ER[Y (w) | X ] = ET[Y (w) | X ]

• YR(w) = c(w) + XRβ(w) + ϵR(w)

• XR ∼ N (µR,Σ)

• XT ∼ N (µT,Σ)
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Generalization of RD, RR and OR

Under assumption ER[Y (w) | X ] = ET[Y (w) | X ]

• YR(w) = c(w) + XRβ(w) + ϵR(w)

• XR ∼ N (µR,Σ)

• XT ∼ N (µT,Σ)
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