Risk Difference, Risk Ratio, Odds Ratio: Key Properties for Transportability and Federated Causal Inference

Julie Josse. Senior Researcher Inria 2020-; Prof. Ecole Polytechnique 2016-2020

Lead Inria-Inserm PreMeDICaL team: personalized medicine by data integration & causal learning

(Online) Decision support tool with quantified uncertainty

Ex: Traumatrix project¹: Reducing under and over triage for improved resource allocation in trauma care

Major trauma: brain injuries or hemorrhagic shock from car accidents, falls, stab wounds, etc. ⇒ requires specialized care/resources in "trauma centers"

Many patients are misdirected: human/ economical costs

Clinical trial launched in 2025: real-time implementation of Machine Learning models in ambulance dispatch via a mobile data collection application

¹www.traumabase.eu - https://www.traumatrix.fr/

Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

Center	Accident	Age	Sex	Weight	Lactacte	Blood	TXA.	Y
						Press.		
Beaujon	fall	54	m	85	NA	180	treated	0
Pitie	gun	26	m	NA	NA	131	untreated	1
Beaujon	moto	63	m	80	3.9	145	treated	1
Pitie	moto	30	W	NA	NA	107	untreated	0
HEGP	knife	16	m	98	2.5	118	treated	1
:								٠.

 \Rightarrow Estimate causal effect (with missing values²): Administration of the treatment tranexamic acid (TXA), given within 3 hours of the accident, on the outcome (Y) 28 days in-hospital mortality for trauma brain patients

²Mayer, I., Wager, S. & J.J. (2020). Doubly robust treatment effect estimation with incomplete confounders. *Annals Of Applied Statistics. (implemented in package grf)*.

Causal inference: "what would happen if?"

Potential Outcome framework (Neyman, 1923; Rubin, 1974)

$$(\underbrace{X}_{\text{covariates}}, \underbrace{W}_{\text{potential outcomes}}) \in \mathbb{R}^d \times \{0, 1\} \times \mathbb{R} \times \mathbb{R}$$

 \triangleright Individual **causal effect** of the binary treatment: $\Delta_i = Y_i(1) - Y_i(0)$

Problem: Δ_i never observed (only one outcome is observed per indiv.)

Γ	С	ovariate	es	Treatment	Outcome(s)		
l	X_1	X_2	X_3	W	Y(0)	Y(1)	
Γ	1.1	20	F	1	?	200	
l	-6	45	F	0	10	?	
	0	15	M	1	?	150	
l							
l	-2	52	M	0	100	?	

Average Treatment Effect (ATE): $\tau = \mathbb{E}[\Delta_i] = \mathbb{E}[Y_i(1) - Y_i(0)]$

ATE with **Risk Difference**: difference of the average outcome had everyone gotten treated and the average outcome had nobody gotten treatment

Randomized Controlled Trial (RCT)

- ▶ gold standard (allocation <a>))
- same covariate distributions in treated and control groups
 - \Rightarrow High **internal** validity

Randomized Controlled Trial (RCT)

- - ⇒ High internal validity
- ▷ expensive, long, ethical limitations
- small sample size: restrictive inclusion criteria
 - ⇒ No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

Randomized Controlled Trial (RCT)

- > **gold standard** (allocation 🐑)
- Same covariate distributions in treated and control groups
 ⇒ High internal validity
- - \Rightarrow No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

- ▷ low cost
- ▷ large amounts of data (registries, biobanks, EHR, claims)
 - ⇒ patient's heterogeneity
- representative of the target populations
 - ⇒ High external validity

Randomized Controlled Trial (RCT)

- Same covariate distributions in treated and control groups
 Nick integral policity.
 - ⇒ High **internal** validity
- - ⇒ No personalized medicine
- trial sample different from the population eligible for treatment
 - ⇒ Low external validity

- ▷ "big data": low quality
- lack of a controlled design opens the door to confounding bias
 - ⇒ Low internal validity
- ▷ low cost
- ▷ large amounts of data (registries, biobanks, EHR, claims)
 - ⇒ patient's heterogeneity
- representative of the target populations
 - ⇒ High external validity

Leverage both RCT and observational data

RCT

- + No confounding
- Trial sample different from the population eligible for treatment

(big) Observational data

- Confounding
- + Representative of the target population

We can use both to 3 . . .

- ▷ ...improve estimation of heterogeneous treatment effects

Extending Causal Inferences From a RCT to a Target Population American J. of Epidemiology.

³Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. *Statistical Science*.

⁴Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. *PNAS*. ⁵Dahabreh. Haneuse. Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for

Leverage both RCT and observational data

RCT

- + No confounding
- Trial sample different from the population eligible for treatment

(big) Observational data

- Confounding
- + Representative of the target population

We can use both to 3 . . .

The FDA has greenlighted the usage of the drug *Ibrance* to men with breast cancer, though clinical trials were performed only on women.

→ Reduce drug approval times and costs

³Colnet, et al. J.J. (2022). Causal inf. for combining RCT & obs. studies. *Statistical Science*. ⁴Elias Bareinboim & Judea Pearl. (2016). Causal inference & the data-fusion problem. *PNAS*.

⁵Dahabreh, Haneuse, Robins, Robertson, Buchanan, Stuart, Hernan. (2021). Study Designs for Extending Causal Inferences From a RCT to a Target Population *American J. of Epidemiology.*

Predicting treatment effects from 1 trial to another population

Bénédicte Colnet (Corps des Mines, French social security's direction), Imke Mayer (Owkin) Erwan Scornet (X - Sorbonne Université), Gaël Varoquaux (Inria)

Generalization task from one RCT to a target population

Two data sources:

- \triangleright A trial of size *n* with $p_R(x)$ the probability of observing individual with X = x,
- ▷ A sample of the target population of interest for e.g. a national cohort (resp. m and $p_T(x)$).

Generalization task from one RCT to a target population

Two data sources:

- \triangleright A trial of size n with $p_R(x)$ the probability of observing individual with X = x,
- ▷ A sample of the target population of interest for e.g. a national cohort (resp. m and $p_T(x)$).

Covariates distribution not the same in the RCT & target pop:

$$p_{\mathrm{R}}(x) \neq p_{\mathrm{T}}(x) \Rightarrow \underbrace{\tau_{\mathrm{R}} := \mathbb{E}_{\mathrm{R}}[Y(1) - Y(0)]}_{\mathrm{ATE \ in \ the \ RCT}} \neq \underbrace{\mathbb{E}_{\mathrm{T}}[Y(1) - Y(0)] := \tau_{\mathrm{T}}}_{\mathrm{Target \ ATE}}$$

AGE

Assumptions for ATE identifiability in generalization

Overlap assumption⁶

$$\forall x \in \mathbb{X}, p_{\mathbb{R}}(x) > 0 \text{ and } \operatorname{supp}(P_T(X)) \subset \operatorname{supp}(P_R(X))$$

The observational covariates support is included in the RCT's support. Every individual in the target population could have been selected into the trial

 $^{^6}$ If this is too strong, we could generalize on a different target population: the target population for which eligibility criteria of the trial are ensured

 $^{^{7}}$ Equivalent formulation with sampling mechanism S (S=1 trial eligibility & willingness to participate) in non-nested design, $\{Y(1), Y(0)\} \perp S \mid X$

Assumptions for ATE identifiability in generalization

Overlap assumption⁶

$$\forall x \in \mathbb{X}, p_{\mathbb{R}}(x) > 0 \text{ and } \operatorname{supp}(P_{\mathcal{T}}(X)) \subset \operatorname{supp}(P_{\mathcal{R}}(X))$$

The observational covariates support is included in the RCT's support. Every individual in the target population could have been selected into the trial

Transportability (Ignorability on trial participation)⁷

$$\forall w \in \{0,1\}$$
 $\mathbb{E}_{\mathbb{R}}[Y(w) \mid X] = \mathbb{E}_{\mathbb{T}}[Y(w) \mid X]$

Corresponds to shifted prognostic variables

 $^{^6}$ If this is too strong, we could generalize on a different target population: the target population for which eligibility criteria of the trial are ensured

⁷ Equivalent formulation with sampling mechanism S (S=1 trial eligibility & willingness to participate) in non-nested design, $\{Y(1), Y(0)\} \perp S \mid X$

Generalization of conditional outcome: identifiability

	Set	S	X_1	<i>X</i> ₂	<i>X</i> ₃	W	Y(0)	Y(:
n-1								
n								
n+1	0	?(0)	-2	52	7.1	NA	NA	NA
n + 2	0	?(1)	-1	35	2.4	NA	NA	NA
	0	?(0)				NA	NA	NA
n + m	0	?(1)	-2	22	3.4	NA	NA	NA

Data with observed treatment W and outcome Y only in the RCT.

Average Treatment Effect:
$$\tau_{\scriptscriptstyle T} = \mathbb{E}_{\scriptscriptstyle T}[Y_i(1) - Y_i(0)], \forall w \in \{0,1\}$$

$$\begin{split} \mathbb{E}_{\mathsf{T}}\left[Y(w)\right] &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{T}}\left[Y(w)\mid X\right]\right] \text{ Law of total expectation} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}\left[Y(w)\mid X\right]\right] \text{ Ignorability} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}\left[Y(w)\mid X=x,W=w\right]\right] \text{ Random treatment} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}\left[Y\mid X=x,W=w\right]\right] \text{ Consistency } Y=Y(1)W+(1-W)Y(0) \\ &\xrightarrow{\mu_{w}(x)} \end{split}$$

Generalization of conditional outcome: identifiability

	Set	S	X_1	X_2	X_3	W	Y(0)	Y(1)		Set	S	X_1	X_2	X_3	W	Y
1								24.1	1							
n — 1																
n																
n+1	0	?(0)	-2	52	7.1	NA	NA	NA	n+1	0	NA	-2	52	7.1	NA	NA
n+2	0	?(1)	-1	35	2.4	NA	NA	NA	n+2	0	NA	-1	35	2.4	NA	NA
	0	?(0)				NA	NA	NA		0	NA				NA	NA
n + m	0	?(1)	-2	22	3.4	NA	NA	NA	n + m	0	NA	-2	22	3.4	NA	NA

Data with observed treatment W and outcome Y only in the RCT.

Average Treatment Effect: $\tau_T = \mathbb{E}_T[Y_i(1) - Y_i(0)], \forall w \in \{0, 1\}$

$$\begin{split} \mathbb{E}_{\mathsf{T}}\left[Y(w)\right] &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{T}}\left[Y(w)\mid X\right]\right] \text{ Law of total expectation} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}\left[Y(w)\mid X\right]\right] \text{ Ignorability} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}[Y(w)\mid X=x,W=w]\right] \text{ Random treatment} \\ &= \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}[Y\mid X=x,W=w]\right] \text{ Consistency } Y=Y(1)W+(1-W)Y(0) \end{split}$$

Regression adjustment - plug-in gformula

$$\hat{\tau}_{g,n,m} = \frac{1}{m} \sum_{i \in \mathcal{T}} (\hat{\mu}_{1,n}(X_i) - \hat{\mu}_{0,n}(X_i))$$

Plug-in gformula: difference between conditional mean

Plug-in gformula

$$\hat{\tau}_{g,n,m} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{\mu}_{1,n}(X_i) - \hat{\mu}_{0,n}(X_i)),$$

$$\mu_w(x) = \mathbb{E}_{R}[Y \mid X = x, W = w]$$

			(Covariat	es	Treat	Outcomes
	Set	S	X_1	X_2	X_3	W	Y
n + 1 n + 2	0	?	-1	35	7.1		
n+2	0	?	-2	52	2.4		
	0	?					
n + m	0	?	-2	22	3.4		

• Fit two models of the outcome (Y) on covariates (X) among trial participants (\mathcal{R}) for treated and for control to get $\widehat{\mu}_{1,n}$ & $\widehat{\mu}_{0,n}$

Plug-in gformula: difference between conditional mean

Plug-in gformula

$$\hat{\tau}_{g,n,m} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{\mu}_{1,n}(X_i) - \hat{\mu}_{0,n}(X_i)),$$

$$\mu_{w}(x) = \mathbb{E}_{R}[Y \mid X = x, W = w]$$

			(Covariat	es	Treat	Outo	omes
	Set	S	X_1	X_2	X_3	W	Y(0)	Y(1)
								24.1
								23.5
n+1	0	?	-1	35	7.1		$\hat{\mu}_0(X_{n+1})$	$\hat{\mu}_1(X_{n+1})$
n + 2	0	?	-2	52	2.4		$\hat{\mu}_0(X_{n+2})$	$\hat{\mu}_1(X_{n+2})$
	0	?						
n + m	0	?	-2	22	3.4		$\hat{\mu}_0(X_{n+m})$	$\hat{\mu}_1(X_{n+m})$

- Fit two models of the outcome (Y) on covariates (X) among trial participants (\mathcal{R}) for treated and for control to get $\widehat{\mu}_{1,n} \& \widehat{\mu}_{0,n}$
- Apply these models to the covariates in the target pop, i.e., marginalize over the covariate distribution of the target pop, gives the expected outcomes
- Compute the differences between the expected outcomes on the target population $\overline{\hat{\mu}_{1,n}(\cdot)}$ $\overline{\hat{\mu}_{0,n}(\cdot)}$

Assumptions for ATE identifiability in generalization

Overlap assumption⁸

$$\forall x \in \mathbb{X}, p_{\mathbb{R}}(x) > 0 \text{ and } \operatorname{supp}(P_T(X)) \subset \operatorname{supp}(P_R(X))$$

The observational covariate support is included in the RCT's support. Every individual in the target population could have been selected into the trial

Transportability of the conditional average treatment effect $(\mathsf{CATE})^9$

$$\underbrace{\mathbb{E}_{\mathbb{E}}[Y(1) - Y(0) \mid X]}_{\tau_{\mathbb{E}}(X)} = \underbrace{\mathbb{E}_{\mathbb{T}}[Y(1) - Y(0) \mid X]}_{\tau_{\mathbb{T}}(X)}$$

Need to know which variables are shifted treatment effect modifiers

The treatment effect depends on covariates in the same way in the source (RCT) and target population

⁸If this is too strong, we could generalize on a different target population: the target population for which eligibility criteria of the trial are ensured

⁹Equivalent formulation (non-nested case) with sampling mechanism S: $(Y(1) - Y(0)) \perp S \mid X$

Identifiability and estimation for generalization: weighting

Generalization of local effects (i.e. conditional effects/strata)

$$\begin{split} \tau_{\mathsf{T}} &= \mathbb{E}_{\mathsf{T}}[Y_i(1) - Y_i(0)] = \mathbb{E}_{\mathsf{T}}[\mathbb{E}_{\mathsf{T}}[Y_i(1) - Y_i(0)|X]] \\ &= \mathbb{E}_{\mathsf{T}}\left[\tau_{\mathsf{T}}(X)\right] = \mathbb{E}_{\mathsf{T}}\left[\tau_{\mathsf{R}}(X)\right] \text{ Transportability CATE} \\ &= \mathbb{E}_{\mathsf{R}}\left[\frac{p_{\mathsf{T}}(X)}{p_{\mathsf{R}}(X)}\tau_{\mathsf{R}}(X)\right] \text{ Overlap} \end{split}$$

IPSW: inverse propensity sampling weighting

$$\hat{\tau}_{\pi,n,m} = \frac{1}{n} \sum_{i \in \mathcal{D}} \frac{\frac{\mathbf{p}_{\mathsf{T}}(X_i)}{\mathbf{p}_{\mathsf{R}}(X_i)}}{\mathbf{p}_{\mathsf{R}}(X_i)} \quad Y_i \left(\frac{W_i}{\pi} - \frac{1 - W_i}{1 - \pi} \right) ,$$

 $\boldsymbol{\pi}$ proba. of treatment assignment in trial

Re-weight, so that the trial follows the target sample's distribution

Re-weighting can be found in the 2000's $(standardization)^{10}$ Idea of relying on an external representative sample to reweight is recent¹¹

¹⁰Rothman & Greenland (1998). Modern Epidemiology.

Reweighting the RCT: reweight Horvitz-Thomson

$$\hat{\tau}_{\pi,n,m} = \frac{1}{n} \sum_{i \in \mathcal{R}} \frac{p_{\mathcal{T}}(X)}{p_{\mathcal{R}}(X)} Y_i \left(\frac{W_i}{\pi} - \frac{1 - W_i}{1 - \pi} \right)$$

- Estimate the **ratio of densities**¹²

$$r(X) := \frac{p_T(X)}{p_R(X)} = \frac{\mathbb{P}(X = x | S = 0)}{\mathbb{P}(X = x | S = 1)}$$
$$= \frac{\mathbb{P}(S = 1)\mathbb{P}(S = 0 | X = x)}{\mathbb{P}(S = 0)\mathbb{P}(S = 1 | X = x)}$$

$$\forall x \in \mathcal{X}, \ \hat{r}(x) = \frac{n/(n+m)}{m/(n+m)} \frac{1 - \hat{\sigma}(x, \beta_{n+m})}{\hat{\sigma}(x, \beta_{n+m})}$$

where
$$x \in \mathcal{X}$$
, $\sigma(x, \beta) = (1 + \exp(-x^{\top}\beta))^{-1}$.

• Case with categorical features: finite sample & asymptotic analysis 13

 $^{^{12}}$ Kanamori, et al. (2010). Theoretical analysis of density ratio estimation. *IEICE transactions*. 13 Colnet, J.J (2022). Reweighting the RCT: finite sample analysis & variable selection. *JRSSA*.

Generalization from Crash 3 trial¹⁴ to the Traumabase

CRASH3

- Multi-centric RCT 29 countries
- Positive effect for moderately injured patients

Traumabase

- ▷ Observational sample
- ▶ 8200 patients with brain trauma
- Deleterious/No evidence for an effect of Tranexomic Acid

Comparison of trials, observational data, and generalization estimates

x-axis: Estimation of the Average Treatment Effect, Confidence intervals with bootstrap y-axis: Estimation methods (estimation of nuisances: parametric: logistic regression - non parametric: forests)

¹⁴(2019). Effects of tranexamic acid on death in patients with acute trauma. brain injury. Lancet.

• 1) Shifted effect modifiers not available in Traumabase¹⁵. Missing covariates in one/both sets: **sensitivity analysis**

				Covariate	s	Treat	Outcomes
	Set	S	X_1	X_2	<i>X</i> ₃	W	Y
1	\mathcal{R}	1	1.1	20	NA	1	24.1
	\mathcal{R}	1	-6	45	NA	0	26.3
n	\mathcal{R}	1	0	15	NA	1	23.5
n+1	0	?	-1	35	7.1		
n + 2	0	?	-2	52	2.4		
	0	?					
n + m	0	?	-2	22	3.4		

¹⁵Colnet, **J.J**, et al. 2022. Generalizing a causal effect: sensitivity analysis. *J. of Causal Inference*.

 $^{^{16}\}mbox{Mayer},$ J.J. 2021. Generalizing effects with incomplete covariates $\it Biometrical$ Journal.

 $^{^{17}\}mbox{Colnet},$ J.J et al. 2023. Reweighting the RCT for generalization: finite sample analysis and variable selection. JRSSC.

¹⁸Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize?

• 1) Shifted effect modifiers not available in Traumabase¹⁵. Missing covariates in one/both sets: **sensitivity analysis**

				Covariate	s	Treat	Outcomes
	Set	5	X_1	X_2	<i>X</i> ₃	W	Y
1	\mathcal{R}	1	1.1	20	NA	1	24.1
	\mathcal{R}	1	-6	45	NA	0	26.3
n	\mathcal{R}	1	0	15	NA	1	23.5
n + 1	0	?	-1	35	7.1		
n + 2	0	?	-2	52	2.4		
	0	?					
n + m	0	?	-2	22	3.4		

• 2) Missing values: Missing values (NA) in both RCT and Obs data¹⁶

¹⁵Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. *J. of Causal Inference*.

 $^{^{16}}$ Mayer, **J.J.** 2021. Generalizing effects with incomplete covariates $Biometrical\ Journal$.

 $^{^{17} {\}rm Colnet}, {\rm J.J}$ et al. 2023. Reweighting the RCT for generalization: finite sample analysis and variable selection. ${\it JRSSC}.$

¹⁸Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize?

• 1) Shifted effect modifiers not available in Traumabase¹⁵. Missing covariates in one/both sets: **sensitivity analysis**

				Covariate	s	Treat	Outcomes
	Set	5	X_1	X_2	<i>X</i> ₃	W	Y
1	\mathcal{R}	1	1.1	20	NA	1	24.1
	\mathcal{R}	1	-6	45	NA	0	26.3
n	\mathcal{R}	1	0	15	NA	1	23.5
n + 1	0	?	-1	35	7.1		
n + 2	0	?	-2	52	2.4		
	0	?					
n + m	0	?	-2	22	3.4		

- 2) Missing values: Missing values (NA) in both RCT and Obs data¹⁶
- 3) Which covariates should be include? Would adding prognostic variables reduce the variance as in the classical case?¹⁷

¹⁵Colnet, **J.J**, et al. 2022. Generalizing a causal effect: sensitivity analysis. *J. of Causal Inference*.

 $^{^{16}}$ Mayer, J.J. 2021. Generalizing effects with incomplete covariates $Biometrical\ Journal$.

 $^{^{17}\}mbox{Colnet},$ J.J et al. 2023. Reweighting the RCT for generalization: finite sample analysis and variable selection. $\it JRSSC.$

¹⁸Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize?

• 1) Shifted effect modifiers not available in Traumabase¹⁵. Missing covariates in one/both sets: **sensitivity analysis**

				Covariate	s	Treat	Outcomes
	Set	5	X_1	X_2	<i>X</i> ₃	W	Y
1	\mathcal{R}	1	1.1	20	NA	1	24.1
	\mathcal{R}	1	-6	45	NA	0	26.3
n	\mathcal{R}	1	0	15	NA	1	23.5
n + 1	0	?	-1	35	7.1		
n + 2	0	?	-2	52	2.4		
	0	?					
n + m	0	?	-2	22	3.4		

- 2) Missing values: Missing values (NA) in both RCT and Obs data¹⁶
- 3) Which covariates should be include? Would adding prognostic variables reduce the variance as in the classical case?¹⁷
- 4) Clinicians are more interested in the **risk ratio** than the risk difference 18

 $^{^{15}}$ Colnet, J.J, et al. 2022. Generalizing a causal effect: sensitivity analysis. *J. of Causal Inference*.

¹⁶Mayer, **J.J.** 2021. Generalizing effects with incomplete covariates *Biometrical Journal*.

 $^{^{17}\}mbox{Colnet},$ J.J et al. 2023. Reweighting the RCT for generalization: finite sample analysis and variable selection. $\it JRSSC.$

¹⁸Colnet, J.J et al. 2024. Risk-Ratio, Odds-ratio, wich causal measure is easier to generalize?

Comparing two average situations

Binary outcome: $\mathbb{P}[Y(w) = 1] = \mathbb{E}[Y(w)]$ and $\mathbb{P}[Y(w) = 0] = 1 - \mathbb{E}[Y(w)]$.

Absolute measures

$$au^{ extsf{RD}} := \mathbb{E}\left[Y(1)
ight] - \mathbb{E}\left[Y(0)
ight], \qquad au^{ extsf{NNT}} := (au^{ extsf{RD}})^{-1}.$$

• Number Needed to Treat (NNT): how many individuals should be treated to observe one individual answering positively to treatment.

Relative measures

$$\tau^{\text{RR}} := \frac{\mathbb{E}\begin{bmatrix} Y(1) \\ \mathbb{E}\begin{bmatrix} Y(0) \end{bmatrix}}{\mathbb{E}\begin{bmatrix} Y(0) \end{bmatrix}}, \quad \tau^{\text{SR}} := \frac{\mathbb{P}\begin{bmatrix} Y(1) = 0 \end{bmatrix}}{\mathbb{P}\begin{bmatrix} Y(0) = 0 \end{bmatrix}} = \frac{1 - \mathbb{E}\begin{bmatrix} Y(1) \end{bmatrix}}{1 - \mathbb{E}\begin{bmatrix} Y(0) \end{bmatrix}},$$
$$\tau^{\text{OR}} := \frac{\mathbb{P}[Y(1) = 1]}{\mathbb{P}[Y(1) = 0]} \left(\frac{\mathbb{P}[Y(0) = 1]}{\mathbb{P}[Y(0) = 0]} \right)^{-1}$$

- A null effect now corresponds to a Risk Ratio of 1
- ullet Survival Ratio (SR) corresponds to the RR with swapped labels Y
- ullet RR is not symmetric to the choice of outcome 0 and 1 –e.g. counting the living or the dead while Odds Ratio (OR) is

Different treatment measures give different impressions

An example: Randomized Control Trial (RCT) from Cook and Sackett (1995)

- Y = 1 stroke in 5 years and Y = 0 no stroke
- W antihyperintensive therapy
- Feature X (blood pressure), X = 1 low baseline risk (15/1000 versus 2/10)

$$\mathbb{P}[Y(0) = 1 \mid X = 0] \ge \mathbb{P}[Y(0) = 1 \mid X = 1]$$

	$ au_{RD}$	$ au_{RR}$	$ au_{SR}$	$ au_{NNT}$	$ au_{OR}$
All (P_R)	-0.0452	0.6	1.05	22	0.57
X = 1	-0.006	0.6	1.01	167	0.6
X = 0	-0.08	0.6	1.1	13	0.545

- RD: treatment reduces by 0.045 the probability to suffer from a stroke
- ullet RR: the treated has 0.6 imes the risk of having a stroke comp. with the control
- SR: increased chance of not having a stroke when treated (factor 1.05).
- NNT: one has to treat 22 people to prevent one additional stroke
- \bullet OR \approx RR in a stratum where prevalence of the outcome is low

Different treatment measures give different impressions

An example: Randomized Control Trial (RCT) from Cook and Sackett (1995)

- Y = 1 stroke in 5 years and Y = 0 no stroke
- W antihyperintensive therapy
- Feature X (blood pressure), X = 1 low baseline risk (15/1000 versus 2/10)

$$\mathbb{P}[Y(0) = 1 \mid X = 0] \ge \mathbb{P}[Y(0) = 1 \mid X = 1]$$

	$ au_{RD}$	$ au_{RR}$	$ au_{SR}$	$ au_{NNT}$	$ au_{OR}$
All (P_R)	-0.0452	0.6	1.05	22	0.57
X = 1	-0.006	0.6	1.01	167	0.6
X = 0	-0.08	0.6	1.1	13	0.545

- RD is heterogeneous with X while RR is homogeneous with X
- Heterogeneity's property defined w.r.t. (i) covariates & (ii) a measure
- Impact of the baseline risk: with 3% baseline mortality reduced to 1% by treatment, RD shows a 0.02 drop, while RR shows controls have three times the risk: RD suggests a small effect; RR highlights a larger one

Formalization of causal measures's properties: toward guidance

The age-old question of how to report effects

- "We wish to decide whether we shall count the failures or the successes and whether we shall make relative or absolute comparisons"
- Mindel C. Sheps, New England Journal of Medicine, in 1958

The choice of the measure is still actively discussed

e.g. Spiegelman and VanderWeele, 2017; Baker and Jackson, 2018; Feng et al., 2019; Doi et al., 2022; Xiao et al., 2021, 2022; Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022 ...

- CONSORT guidelines recommend to report all of them

Risk ratio, odds ratio, risk difference

Which causal measure is easier to generalize?

A desirable property: collapsibility

Collapsibility¹⁹: Population's effect is equal to a weighted sum of local effects (conditional effects)

Direct collapsibility - weights are equal to population's proportions

$$\tau = \mathbb{E}\left[\tau(X)\right]$$

Risk Difference is directly collapsible

	$ au_{ extsf{RD}}$	$ au_{RR}$	$ au_{SR}$	$ au_{NNT}$	$ au_{OR}$
All (P_R)	-0.0452	0.6	1.05	22	0.57
X = 1	-0.006	0.6	1.01	167	0.6
X = 0	-0.08	0.6	1.1	13	0.545

$$\tau_{\rm R}^{\rm RD} = p_{\rm R}(X=1) \times \tau_{\rm R}^{\rm RD}(X=1) + p_{\rm R}(X=0) \times \tau_{\rm R}^{\rm RD}(X=0)$$
$$-0.0452 = -0.47 \times 0.006 - 0.53 \times 0.08.$$

Useful for generalization! (replacing p_R by p_T)

 $^{^{19}}$ Greenland (1987), Hernan et al. (2011), Huitfield et al. (2019), Didelez & Stensrud (2022), etc.

A desirable property: collapsibility

Collapsibility: Population's effect is equal to a weighted sum of local effects (conditional effects)

Collapsibility: weights depend on the baseline distribution Y(0)

$$\mathbb{E}[w(X, P(X, Y(0))) \tau(X)] = \tau \text{ with } w \ge 0, \ \mathbb{E}[w(X, P(X, Y(0)))] = 1$$

• Risk Ratio is collapsible:

$$\mathbb{E}\left[\tau_{RR}(X)\frac{\mathbb{E}\left[Y(0)\mid X\right]}{\mathbb{E}\left[Y(0)\right]}\right] = \tau_{RR}$$

• Estimation challenges: No methods or theoretical properties for RR in RCTs & observational data. In Boughdiri, et al $(2024)^{20}$ we propose: Weighting & outcome modeling estimators (asymptotic & finite-sample analyses) + Two doubly robust estimators via semi-parametric theory.

²⁰Boughdiri, J.J., Scornet. (2024). Estimating Risk Ratios in Causal Inference. *Submited*.

Summary of causal measure properties

Direct collapsibility

$$\mathbb{E}\left[\tau(X)\right] = \tau$$

Collapsibility: weights depend on the baseline distribution Y(0)

$$\mathbb{E}\left[w(X, P(X, Y(0))) \tau(X)\right] = \tau \quad \text{with } w \ge 0, \ \mathbb{E}\left[w(X, P(X, Y(0)))\right] = 1$$

Logic respecting (Simpson paradox)

$$\tau \in \left[\min_{x}(\tau(x)), \max_{x}(\tau(x))\right].$$

Ex. OR: Overall population, $au_{\rm OR} pprox 0.26~ au_{\rm OR|F=1} pprox 0.167$ and $au_{\rm OR|F=0} pprox 0.166$

Measure	Dir. collapsible	Collapsible	Logic-respecting
Risk Difference	Yes	Yes	Yes
Number Needed to Treat	No	No	Yes
Risk Ratio	No	Yes	Yes
Survival Ratio	No	Yes	Yes
Odds Ratio	No	No	No

Back to generalizability from one RCT to a Target pop.

Back to generalizability from one RCT to a Target pop.

Generalizing	Conditional Outcome	Local effects/CATE	
Assumption	$\mathbb{E}_{\mathbb{R}}[Y(w) \mid X] = \mathbb{E}_{\mathbb{T}}[Y(w) \mid X]$	$\tau_R(X) = \tau_{T}(X)$	
Variables	All shifted prognostic covariates	All shifted effect modifiers	
Identification	$\mathbb{E}_{T}\left[Y(w)\right] = \mathbb{E}_{T}\left[\mathbb{E}_{R}\left[Y(w) \mid X\right]\right]$	$\mathbb{E}_{\mathbb{R}}\left[\frac{p_{T}(X)}{p_{R}(X)}w_{T}(Y(0),X)\tau_{R}(X)\right]$	
Estimation	Ex: Regression (G-formula)	Ex: Weighting	

- \bullet Generalize local effects only for collapsible measures, need info. on Y(0)
- Generalizing conditional outcome require stronger assumptions
- Depending on the underlying DGP assumption & direction of the effects, some measure disantangle baseline risk from effect modifiers ²¹

 $^{^{21}}$ Colnet, J.J, et al. (2024). Risk ratio, odds ratio, risk difference... Which causal measure is easier to generalize?

Generalization of a first moment population-level estimands

Let P(Y(0), Y(1)) the joint distribution of the potential outcomes.

• τ^P a 1st moment population-level²² measure if $\exists \ \Phi : D_{\Phi} \to \mathbb{R}, \ D_{\Phi} \subset \mathbb{R}^2$

$$\Phi\left(\mathbb{E}_P[Y(1)], \mathbb{E}_P[Y(0)]\right) = \tau_{\Phi}^P$$

Measure	Effect Measure	Domain D _Φ
Risk Difference (RD)	$\Phi(x,y)=x-y$	\mathbb{R}^2
Risk Ratio (RR)	$\Phi(x,y) = \frac{x}{y}$	$\mathbb{R} imes \mathbb{R}^*$
Odds Ratio (OR)	$\Phi(x,y) = \frac{x}{1-x} \cdot \frac{1-y}{y}$	$\mathbb{R}/\{1\} imes\mathbb{R}^*$
NNT	$\Phi(x,y) = \frac{1}{x-y}$	$\{(x,y)\in\mathbb{R}^2 x+y\neq 0\}$

• An individual-level measure depends on the joint distribution. Considered non identifiable but workarounds exist²³. Ex: $\mathbb{E}\left[\frac{Y_{i}(1)}{Y_{i}(0)}\right] \neq \frac{\mathbb{E}[Y_{i}(1)]}{\mathbb{E}[Y_{i}(0)]}$

²²Fay & Li. (2024). Causal interpretation of the hazard ratio in RCTs. *Clinical Trials*.

²³Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis.

Generalization of first moment population-level estimands

Identifiability formulae

$$\mathbb{E}_{\scriptscriptstyle \mathsf{T}}[Y(w)] = \mathbb{E}_{\scriptscriptstyle \mathsf{R}}\left[\frac{p_{\mathsf{T}}(X)}{p_{\mathsf{R}}(X)}Y(w)\right]$$

Estimator: Oracle Re-weighted Horvitz-Thomson

$$\hat{\tau}_{\Phi}^{\pi,n,m,\sigma} = \Phi\left(\frac{1}{n}\sum_{i=1}^{n} r(X_i) \frac{Y_i W_i}{\pi}, \frac{1}{n}\sum_{i=1}^{n} r(X_i) \frac{Y_i(1 - W_i)}{1 - \pi}\right),$$

$$\sqrt{(n+m)}\left(\hat{\tau}_{\Phi}^{\pi,n,m,\sigma} - \tau_{\Phi}^{T}\right) \stackrel{d}{\to} \mathcal{N}\left(0, V_{\Phi}^{\pi,\alpha,\sigma}\right)$$

Measure	Variance				
Risk Difference (RD)	$\frac{1}{\alpha} \left(\frac{\mathbb{E}_{\mathcal{T}}\left[r(X)(Y^{(1)})^2 \right]}{\pi} + \frac{\mathbb{E}_{\mathcal{T}}\left[r(X)(Y^{(0)})^2 \right]}{1-\pi} - (\tau_{RD}^{\mathcal{T}})^2 \right)$				
Risk Ratio (RR)	$\frac{(\tau_{RR}^{T})^2}{\alpha} \left(\frac{\mathbb{E}_{T}\left[r(X)(Y^{(1)})^2\right]}{\pi \mathbb{E}_{T}\left[Y^{(1)}\right]^2} + \frac{\mathbb{E}_{T}\left[r(X)(Y^{(0)})^2\right]}{(1-\pi)\mathbb{E}_{T}\left[Y^{(0)}\right]^2} \right)$				
Odds Ratio (OR)	$\frac{(\tau_{OR}^{T})^2}{\alpha} \left(\frac{\mathbb{E}_{T} \left[r(X)(Y^{(1)})^2 \right]}{\pi (\mathbb{E}_{T}[Y^{(1)}])^2} + \frac{\mathbb{E}_{T} \left[r(X)(Y^{(0)})^2 \right]}{(1-\pi)(\mathbb{E}_{T}[Y^{(0)}])^2} - 1 \right) 25$				

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{X}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- $X_T \sim \mathcal{N}(\mu_T, \Sigma)$

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{\mathsf{X}}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- $X_T \sim \mathcal{N}(\mu_T, \Sigma)$

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{\mathsf{X}}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- $X_{\mathsf{T}} \sim \mathcal{N}(\mu_{\mathsf{T}}, \Sigma)$

From one to multiple Randomized Control Trials (RCTs)

Meta-analysis (aggregating estimated effects from multiple studies) is at the top of the pyramid of evidence based medicine.

Meta-analysis still faces significant challenges:

- Be careful with aggregation of causal measures (Odds Ratio?)
- Heterogeneity across studies: sample size, population, center effects
- Difficulty to share individual-level data: data silos & regulations

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

initialize θ for each round $t=0,1,\dots$ do for each party k in parallel do $\theta_k \leftarrow \text{ClientUpdate}(k,\theta)$ $\theta \leftarrow \frac{1}{k} \sum_{k=1}^{K} \theta_k$

Algorithm ClientUpdate (k, θ)

Parameters: # steps L, step size η for $1, \ldots, L$ do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)$ send θ to server

Bridging causal inference and federated learning to improve treatment effect estimation from **decentralized data sources**

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? *Stat. Med.*

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

initialize model

Algorithm FedAvg (server-side)

 $\begin{aligned} & & \text{initialize } \theta \\ & \text{for each round } t = 0, 1, \dots \text{ do} \\ & \text{for each party } k \text{ in parallel do} \\ & \theta_k \leftarrow \text{ClientUpdate}(k, \theta) \\ & \theta \leftarrow \frac{1}{k} \sum_{k=1}^{K} \theta_k \end{aligned}$

Algorithm ClientUpdate (k, θ)

Parameters: # steps L, step size η for $1, \ldots, L$ do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)$ send θ to server

Bridging causal inference and federated learning to improve treatment effect estimation from decentralized data sources

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

each party makes an update using its local dataset

Algorithm FedAvg (server-side)

initialize θ

for each round $t = 0, 1, \dots$ do for each party k in parallel do $\theta_k \leftarrow \text{ClientUpdate}(k, \theta)$ $\theta \leftarrow \frac{1}{k} \sum_{k=1}^{K} \theta_k$

Algorithm ClientUpdate(k, θ)

Parameters: # steps L, step size η

for 1,..., L do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)$ send θ to server

Bridging causal inference and federated learning to improve treatment effect estimation from decentralized data sources

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

$$\label{eq:algorithm} \begin{split} & \underline{\text{Algorithm FedAvg (server-side)}} \\ & \text{initialize } \theta \\ & \text{for each round } t = 0, 1, \dots \text{ do} \\ & \text{for each party } k \text{ in parallel do} \\ & \theta_k \leftarrow \text{ClientUpdate}(k, \theta) \\ & \theta \leftarrow \frac{1}{k} \sum_{k=1}^K \theta_k \end{split}$$

Algorithm ClientUpdate(k, θ)

Parameters: # steps L, step size η for 1,..., L do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)$ send θ to server

Bridging causal inference and federated learning to improve treatment effect estimation from **decentralized data sources**

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]


```
\begin{aligned} & \textbf{Algorithm} & \text{ FedAvg (server-side)} \\ & \text{ initialize } \theta \\ & \textbf{ for each round } t = 0, 1, \dots \textbf{ do} \\ & \textbf{ for each party } k \text{ in parallel } \textbf{ do} \\ & \theta_k \leftarrow \text{ClientUpdate}(k, \theta) \\ & \theta \leftarrow \frac{1}{K} \sum_{k=1}^K \theta_k \end{aligned}
```

```
Algorithm ClientUpdate(k, \theta)

Parameters: # steps L, step size \eta

for 1, \dots, L do

\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)

send \theta to server
```

Bridging causal inference and federated learning to improve treatment effect estimation from **decentralized data sources**

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

parties update their copy of the model and iterate

Algorithm FedAvg (server-side)

for each round $t=0,1,\ldots$ do for each party k in parallel do $\theta_k \leftarrow \text{ClientUpdate}(k,\theta)$ $\theta \leftarrow \frac{1}{k} \sum_{k=1}^K \theta_k$

Algorithm ClientUpdate (k, θ)

send θ to server

Parameters: # steps L, step size η for 1,..., L do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_R)$

Bridging causal inference and federated learning to improve treatment effect estimation from decentralized data sources

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

A BASELINE FL ALGORITHM: FEDAVG [McMahan et al., 2017]

parties update their copy of the model and iterate

Algorithm FedAvg (server-side)

initialize θ for each round $t = 0, 1, \dots$ do for each party k in parallel do $\theta_k \leftarrow \text{ClientUpdate}(k, \theta)$ $\theta \leftarrow \frac{1}{k} \sum_{k=1}^{k} \theta_k$

Algorithm ClientUpdate(k, θ)

Parameters: # steps L, step size η

for $1, \dots, L$ do $\theta \leftarrow \theta - \eta \nabla F(\theta; \mathcal{D}_k)$ send θ to server

 Numerous extensions / improvements: fully decentralized (no server), dealing with highly heterogeneous data, privacy, fairness, compression... [Kairouz et al., 2021]

Bridging causal inference and federated learning to improve treatment effect estimation from decentralized data sources

 $^{^{24}}$ Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not two-stage? $Stat.\ Med.$

²⁵ Khellaf R, Bellet, A. & J.J. (2025). Multi-study ATE estimation beyond meta-analysis. *AISTAT*.

Federated Averaging (FedAvg) for Linear Regression

Linear Regression

 $Y = X\beta + \varepsilon$. Estimate β by minimizing the MSE:

$$\operatorname{argmin}_{\beta} \ell(\beta; X_i, Y_i) \text{ with } \ell(\beta; X_i, Y_i) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i \beta)^2$$

Gradient Descent (GD)

- 1. Initialize β_0 with zeros
- 2. Update $\beta_{t+1} := \beta_t \eta \nabla \ell(\beta_t)$, $\nabla \ell(\beta_t) = -\frac{2}{n} \sum_{i=1}^n X_i'(Y_i X_i\beta)$
- 3. Repeat for L steps until convergence

Choices: learning rate η & L to get $\hat{\beta}_{\rm GD} \approx \hat{\beta}_{\rm OLS}$, equality as $L \to \infty$. $\eta < \frac{2}{L}$, L the smoothness const., the highest eigenvalue $\lambda_{\rm max}$ of $X^{\top}X$

Federated Averaging (FedAvg) for Linear Regression

Linear Regression

 $Y = X\beta + \varepsilon$. Estimate $\hat{\beta}^{\text{FedAvg}}$ by minimizing:

$$\operatorname{argmin}_{\beta} \sum_{k=1}^K \frac{n_k}{n} \ell_k(\beta) \text{ with } \underline{\ell_k(\beta)} = \frac{1}{n_k} \sum_{i=1}^{n_k} (Y_i^k - X_i^k \beta)^2$$

Federated Learning extends GD to a distributed setting

- 1. Initialize on central server β_0 with zeros (globally shared)
- 2. For each **communication round** t = 1, ..., T:
 - Each site k = 1, ..., K performs L = 1 gradient step on its data:

$$\beta_{t+1}^k := \beta_t^k - \eta \nabla \ell_k(\beta_t^k)$$
 with $\nabla \ell_k(\beta_t^k) = -\frac{2}{n_k} \sum_{i=1}^{n_k} X_i'^k(Y_i^k - X_i^k\beta)$

 \bullet Parameters sent to the server for aggregation: $\beta_{t+1} := \frac{1}{K} \sum_{k=1}^K \beta_{t+1}^k$

Choices: learning rate η , communication T & L.

 $T=1 \& L \to \infty$: One-shot federated learning, meta analysis on β

Source	Obs.	Covariates			Treat.	Outcome
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	i	:	:	:	:
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Source	Obs.	Covariates			Treat.	Outcome
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	:	:	÷	:	i:
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Source	Obs.	Covariates			Treat.	Outcome
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	i	i	÷	:	:
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Source	Obs.	Covariates			Treat.	Outcome
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	:	:	÷	:	<u>:</u> :
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

Source	Obs.	Covariates			Treat.	Outcome
Н	i	X_1	X_2	<i>X</i> ₃	W	Y
1	1	2.3	1.5	М	1	3.2
1	2	2.2	3.1	F	0	2.8
:	:	:	:	:	:	:
2	1	4.5	5.0	F	1	4.1
:	:	:	:	÷	:	<u>:</u>
K	1	3.7	2.0	F	0	2.8
:	:	:	:	:	:	:
K	n _K	2.5	1.7	М	0	3.2

We consider K decentralized and potentially heterogeneous RCTs (studies) from different sources and want to estimate the ATE given by $\tau = \mathbb{E}\left(\mathbb{E}(Y^{(1)} - Y^{(0)} \mid H)\right)$

Source	Obs.	Co	ovariat	es	Treat.	Outcome	
Н	i	X_1	X_2	<i>X</i> ₃	W	Y	
1	1	2.3	1.5	М	1	3.2	
1	2	2.2	3.1	F	0	2.8	(н)
:	:	:	:	:	:	:	
2	1	4.5	5.0	F	1	4.1	(x)
:	:	:	:	:	:	:	W
K	1	3.7	2.0	F	0	2.8	
:	:	:	:	:	:	:	
K	n_K	2.5	1.7	М	0	3.2	

How to estimate τ without pooling together individual-level data?

Three types of federated estimators - collapsible measures (RD)

Ex: linear outcome model for all studies $\forall k$: $Y_{k,i}^{(w)} = c^{(w)} + X_{k,i}\beta^{(w)} + \varepsilon_{k,i}^{(w)}$

Baseline: estimator
$$\hat{\tau}_{\text{pool}} = \frac{1}{n} \sum_{i=1}^{n} X_i' (\hat{\theta}_{\text{pool}}^{(1)} - \hat{\theta}_{\text{pool}}^{(0)})$$
 on pooled data $\hat{\theta}_{\text{pool}}^{(w)} = (\hat{c}_{\text{pool}}^{(w)}, \hat{\beta}_{\text{pool}}^{(w)}) = (X^{\prime(w)^{\top}} X^{\prime(w)})^{-1} X^{\prime(w)^{\top}} Y^{(w)}$ with $X^{\prime(w)} = [1, X^{(w)}]$

Aggregation w_k : sample size weights (SW) or inverse variance weights (IVW)

Three types of federated estimators - collapsible measures (RD)

Ex: linear outcome model for all studies $\forall k$: $Y_{k,i}^{(w)} = c^{(w)} + X_{k,i}\beta^{(w)} + \varepsilon_{k,i}^{(w)}$

$$\begin{array}{l} \text{Baseline: estimator } \hat{\tau}_{\text{pool}} = \frac{1}{n} \sum_{i=1}^{n} X_i' (\hat{\theta}_{\text{pool}}^{(1)} - \hat{\theta}_{\text{pool}}^{(0)}) \text{ on pooled data} \\ \hat{\theta}_{\text{pool}}^{(w)} = (\hat{c}_{\text{pool}}^{(w)}, \hat{\beta}_{\text{pool}}^{(w)}) = \left({X'^{(w)}}^{\top} {X'^{(w)}}^{\top} {X'^{(w)}}^{\top} {Y'^{(w)}}^{\top} Y^{(w)} \text{ with } {X'^{(w)}} = [1, X^{(w)}] \\ \end{array}$$

Aggregation w_k : sample size weights (SW) or inverse variance weights (IVW)

Three types of federated estimators - collapsible measures (RD)

Ex: linear outcome model for all studies $\forall k$: $Y_{k,i}^{(w)} = c^{(w)} + X_{k,i}\beta^{(w)} + \varepsilon_{k,i}^{(w)}$

Aggregation w_k : sample size weights (SW) or inverse variance weights (IVW)

Statistical perf. & communication costs

Heterogeneity: Source membership H only affects treatment allocation: $W_{k,i} \sim \mathcal{B}(p_k)$

Unbiased estimators but different asymptotic variance & communication costs:

Estimator	\mathbb{V}^{∞}	Com. rounds	Com. cost
$\hat{ au}_{Meta ext{-}SW}$	$\frac{\sigma^2}{n} \sum_{k=1}^{K} \frac{\rho_k}{\rho_k (1 - \rho_k)} + \frac{1}{n} \ \beta^{(1)} - \beta^{(0)}\ _{\Sigma}^2$	1	O(1)
$\hat{ au}_{Meta-IVW}$	$\left(\sum_{k=1}^{K} \left(\sigma^{2} \frac{n \rho_{k}}{p_{k}(1-p_{k})} + \frac{1}{n_{k}} \ \beta^{(1)} - \beta^{(0)}\ _{\Sigma}^{2}\right)^{-1}\right)^{-1}$	1	O(1)
$\hat{\tau}_{\text{1S-SW}}$	$V_{ m pool}$	2	O(d)
$\hat{\tau}_{\text{1S-IVW}}$	$V_{ m pool}$	2	$O(d^2)$
$\hat{ au}_{ ext{GD}}$	$V_{ m pool}$	T+1	O(Td)
$\hat{ au}_{pool}$	$V_{\text{pool}} = \frac{\sigma^2}{n} \frac{1}{\rho(1-\rho)} + \frac{1}{n} \ \beta^{(1)} - \beta^{(0)}\ _{\Sigma}^2$	_	_

with
$$\rho_k = \mathbb{P}(H = k)$$
 and $p = \sum_{k=1}^K \frac{n_k}{n_k} p_k$

Numerical illustration

loog

- K = 5 studies, d = 10 variables, $n_k = 5d$ observation/study
- Treatment allocation $p_1 = p_2 = p_3 = 0.9$, $p_4 = p_5 = 0.1$

--- True Tau

GD GD

Heterogeneity in covariates distributions

- \triangleright **Distributional shift** across sources: $H \not\perp \!\!\! \perp X \implies \tau_k \neq \tau_{k'}$
- \triangleright Global ATE is given by $\tau = \sum_{k=1}^K \rho_k \tau_k$ with $\rho_k = \mathbb{P}(H = k)$

Summary of results

- ho $\hat{ au}_{
 m meta-IVW}$ is biased because inverse variance weights give biased estimates of the ho_k
- $\triangleright \mathbb{V}^{\infty}(\hat{\tau}_{\mathsf{pool}}) \!=\! \mathbb{V}^{\infty}(\hat{\tau}_{\mathsf{GD}}) \!=\! \mathbb{V}^{\infty}(\hat{\tau}_{1\mathsf{S-IVW}}) \!\leq\! \mathbb{V}^{\infty}(\hat{\tau}_{\mathsf{meta-SW}})$
- ho $\hat{\tau}_{\mathrm{1S-SW}}$ is robust to heterogeneous covariances $\{\Sigma_k\}_k$ but has larger variance for different means $\{\mu_k\}_k$

Numerical illustration

Heterogeneity from Center Effects

- Studies may have varying practices or organizational contexts
- ▶ Model: fixed effect of the source H onto the outcome Y:

$$Y_{k,i}^{(w)} = c^{(w)} + \frac{h_k}{h_k} + X_{k,i}\beta^{(w)} + \varepsilon_i(w)$$

Note: CATEs $\mathbb{E}[Y(1) - Y(0)|X, H]$ are the same/sources

Summary of results

- riangleright $\hat{ au}_{
 m meta-SW}$ and $\hat{ au}_{
 m meta-IVW}$ naturally account for the center effects
- Other federated estimators are biased and need to be adjusted. GD estimators: add H as an additional covariate

Numerical illustration

Numerical illustration

Summary: decision diagram for practitioners

Figure 6: Decision Diagram for Practitionners. The sign \bigstar denotes scenarios where the DM estimator is biased.

Federated RCTs: Guidelines Meta & GD predilection regimes

- ightharpoonup Small **sample size**: Gradient Descent: other need $n_k^{(w)} \geq d$ for k, w
- ightharpoonup Heterogeneity: Shift across sources ($\hat{ au}_{meta-IVW}$ biased); different baseline outcomes ($\hat{ au}_{meta}$ handles center effects, $\hat{ au}_{GD}$ needs adjustment/prior knowledge on the model)
- \triangleright **Non collapsibility**: GD (step 2: estimate local $\mathbb{E}[Y(w)]$)

Federated Causal Inference/Generalization

Similarity between both problems

▷ FL: Target population defined as a mixture of K sites

r.

D

Federated IPW for observational data

$$e(X_i) = \sum_{k=1}^K \mathbb{P}(H_i = k \cap W_i = 1 \mid X_i).$$

$$e(X_i) = \sum_{k=1}^K \underbrace{\rho_k \frac{\mathbb{P}(X_i \mid H_i = k)}{\mathbb{P}(X_i)}}_{\text{density weights}} e_k(X_i).$$

Federated Causal Inference/Generalization

Similarity between both problems

- Same assumptions of transportability
- Same dichotomy of approaches between collapsible/non collapsible measures

Federated IPW for observational data

$$e(X_i) = \sum_{k=1}^K \mathbb{P}(H_i = k \cap W_i = 1 \mid X_i).$$

$$e(X_i) = \sum_{k=1}^{K} \underbrace{\rho_k \frac{\mathbb{P}(X_i \mid H_i = k)}{\mathbb{P}(X_i)}}_{\text{density weights}} e_k(X_i).$$

Future work: Multiple RCTs & Multiple Observational data

black correspond to sporadically & systematic missing covariates

- Implementation of a package
- Extension to population-level measures and individual-level ones²⁶
- Complex outcome/treatment/features distributions, survival, time
- Federated Random Forests
- Provide robust privacy guarantees (differential privacy)

Clément Berenfeld, Ahmed Boudghiri, Rémi Khellaf, Aurelien Bellet, Erwan Scornet (Sorbone)

²⁶Even, **J.J.** (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis

Policy learning for personalized treatment

- ▶ Policy estimation
 - Counterfactual outcome estimation/CATE: T-learners, R-learner,
 X-learner, DR-learner, Causal Forest, etc.
 - Direct treatment rule estimation approach: Single stage outcome weighted learning, weighted classification
- ▶ Policy evaluation: Substitution estimator, AIPW, TMLE value
- ⇒ + Choice of learners (parametric/non param., etc) /software/ missing

Policy learning for personalized treatment

▶ Policy estimation

- ♦ Counterfactual outcome estimation/CATE: T-learners, R-learner, X-learner, DR-learner, Causal Forest, etc.
- Direct treatment rule estimation approach: Single stage outcome weighted learning, weighted classification
- ▶ Policy evaluation: Substitution estimator, AIPW, TMLE value
- ⇒ + Choice of learners (parametric/non param., etc) /software/ missing

Recommended optimal dose never matched the one prescribed by the MD!

Identifying Gaps in the Literature

Mihaela's Quote:

"A big part in a researcher's workflow is to identify gaps in the literature."

Question: Should we also focus on consolidation?

- Too many methods and papers, leading to an overwhelming number of choices.
- Users are lost in the multitude of options available.

▶ Gap Between Theory and Practice:

 Many theoretical advancements do not translate effectively into practice.

Incentive Structures:

- Need for incentives for sustained/maintained software beyond just hosting code on GitHub.
- ♦ Incentive for consolidation?

Importance of Careful Design Over New Methods

Key Considerations:

- ▷ Careful design is more critical than merely creating new methods.
- ▶ Which data should be collected?

Example 1: In Vitro Fertilization (IVF)

- ▶ Question: Can we expect reliable results without understanding the patient's psychological state?

Example 2: Personalized Medicine

- ▷ Goal: Determine the best treatment for each individual.
- ▶ Observation: In oncology, similar profiles can have vastly different treatment outcomes.
- ▶ Hypothesis: External factors (e.g., exercise, acupuncture, dietary supplements, hypnosis) could influence outcomes.
- ▶ Conclusion: We must encourage the collection of such additional information.

The Limits of AutoML

Question: Can we rely on AutoML?

Lack of Contextual Information:

- Important information is missing from datasets, which is often uncovered through collaborative discussions.
- ♦ This context affects how data is coded and interpreted.

Examples:

- Distribution changes in gravity scores due to funding tied to patient severity.
- Missing values due to team disagreements; Orientation depends of trust/reputation

Context is crucial to **access algorithms**. Go beyond the model: what is its impact on all stakeholders?

Mihaela's Quote:

"Having clear communication between both parties may avoid researchers wasting valuable resources and time on problems that need not be solved."

Generalization of first moment population-level estimands

Transportability (Ignorability on trial participation)

$$\forall w \in \{0,1\} \quad \mathbb{E}_{\mathbf{R}}[Y(w) \mid X] = \mathbb{E}_{\mathbf{T}}[Y(w) \mid X]$$

Identifiability formulae

$$\mathbb{E}_{\mathsf{T}}\left[Y(w)\right] = \mathbb{E}_{\mathsf{T}}\left[\mathbb{E}_{\mathsf{R}}\left[Y(w)|X\right]\right]$$

Estimator: G-formula transported

$$\hat{\tau}_{\Phi,G} = \Phi\left(\frac{1}{m}\sum_{i=1}^{m}\mu_{(1)}^{R}(X_{i}), \frac{1}{m}\sum_{i=1}^{m}\mu_{(0)}^{R}(X_{i})\right)$$

Estimator: Doubly robust

$$\hat{\tau}_{\Phi,\textit{DR}}^{\pi,\boldsymbol{\beta}} = \Phi\left(\tilde{Y}(1),\tilde{Y}(0)\right)$$

$$\tilde{Y}(w) = \frac{1}{m} \sum_{i=1}^{m} \mu_{(w)}^{R}(X_i) + \frac{1}{n} \sum_{i=1}^{n} r(X_i, \beta) \mathbf{1}_{W_i = w} \frac{Y_i - \mu_{(w)}^{R}(X_i)}{\mathbb{P}_{R}(W = w)}$$

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{\mathsf{X}}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- $X_T \sim \mathcal{N}(\mu_T, \Sigma)$

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{\mathsf{X}}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- $X_{\mathsf{T}} \sim \mathcal{N}(\mu_{\mathsf{T}}, \Sigma)$

- $Y_{R}(w) = c(w) + X_{R}\beta(w) + \epsilon_{R(w)}$
- ullet $oldsymbol{\mathsf{X}}_{\mathsf{R}} \sim \mathcal{N}(oldsymbol{\mu}_{\mathsf{R}}, \Sigma)$
- ullet $X_{\scriptscriptstyle\mathsf{T}} \sim \mathcal{N}(\mu_{\scriptscriptstyle\mathsf{T}}, \Sigma)$

