Teaching
I was teaching at Polytechnique for the 3A, in the Master Data Sciences for Business (I was in charge of) and in the Master Data Sciences.
-
-
- R for statistics: bookdown 2017.
- Machine learning: unsupervised – supervised learning
- Regression
- Missing values: slides – Lecture notes –
Data analysis html – Data analysis Rmd – ozone data – plant data - Causal Inference
-
Lecture on multivariate exploratory data analysis, PCA, CA, MCA, MultiTable data:
François Husson playlist on youtube (lecture, lab with R + MOOC) + FactoShiny
older: Correspondence Analysis, multiple correspondence analysis, multi-block methods–
Reference book: Elements of statistical learning
Some tutorials. For recent tutorials on missing values see the Rmistatic plateform.
Year | Title | Events | slides/video |
---|---|---|---|
2021 | Short intro on causal inference | Google Brain | slides |
2021 | Causal inference for observational clinical data | AI4Health | slides Lab, ATE Lab, HTE |
2016-2017 | Missing values imputation | useR!2016, Stanford Gdr Ecology stat, Lyon INRIA, saclay | Ozone data codeMissUSER2016 slides Lab Notes |
2015 | Handling missing values with a special focus on the use of principal component methods. (3h). | useR! 2015, the R useR conference, Aalborg, Denmark | |
2014 | Lecture on dealing with missing values. (3h) | Stanford University, CA, USA | [slides] [ozone data] [code] [ecological data] [code] |
2011 | Panorama sur les méthodes d'analyse exploratoire des données. (3h) | Journées de l'Ecole Doctorale Pierre Louis de Santé Publique : Epidémiologie et Sciences de l'Information Biomédicale. St Malo, France | [slides, data] |