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Traumabase project: decision support for trauma patients

▷ 30 000 French trauma patients1

▷ 250 features from the accident site to the hospital discharge

▷ 30 hospitals

▷ 4000 new patients/ year

Center Accident Age Sex Weight Lactactes BP TXA. Y

Beaujon fall 54 m 85 NM 180 treated 0

Pitie gun 26 m NR NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NR Imp 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect: Administration of the treatment tranexamic acid

(TXA), given within 3 hours of the accident, on the outcome Y 28 days intra

hospital mortality for trauma brain patients

TXA decreases mortality for extra-cranial bleeding. Effect for intra-cranial

bleeding? (detected by CT scan). TXA is one of the first treatments given
1www.traumabase.eu - https://www.traumatrix.fr/



4

Missing data: important bottleneck in statistical practice
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”One of the ironies of Big Data is that missing data play an ever more

significant role”2

Complete-case analysis, often not a good idea! What are the alternatives?

Inferential aim: Estimate parameters & their variance, i.e. β̂, V̂ (β̂)

Matrix completion aim: Predict the missing values - low rank approx.

Predictive aim: Predict an outcome with missing values in covariates

Rmistatic > 150 packages,3 4

2Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.
3J., et al. https://rmisstastic.netlify.com/ - Tutorial JJ diableret.
4R Taskview https://cran.r-project.org/web/views/MissingData.html

https://rmisstastic.netlify.com/
https://rmisstastic.netlify.com/
http://juliejosse.com/wp-content/uploads/2022/03/diableret_lecture.pdf
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”One of the ironies of Big Data is that missing data play an ever more

significant role”2

Complete-case analysis, often not a good idea! What are the alternatives?

Inferential aim: Estimate parameters & their variance, i.e. β̂, V̂ (β̂)

Matrix completion aim: Predict the missing values - low rank approx.

Predictive aim: Predict an outcome with missing values in covariates

Rmistatic > 150 packages,3 4

2Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.
3J., et al. https://rmisstastic.netlify.com/ - Tutorial JJ diableret.
4R Taskview https://cran.r-project.org/web/views/MissingData.html

https://rmisstastic.netlify.com/
https://rmisstastic.netlify.com/
http://juliejosse.com/wp-content/uploads/2022/03/diableret_lecture.pdf
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Missing values alter causal analyses

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 ? 200

-6 45 NA 0 10 ?

0 NA M 1 ? 150

NA 32 F 1 ? 100

1 63 M 1 15 ?

-2 NA M 0 20 ?

Both causal and missing assumptions

1. Classical unconfoundedness + classical missing values mechanisms5

2. Unconfoundedness with missing + (no) missing values mechanisms6

3. Latent unconfoundedness + MCAR7

5Seaman and White. IPW with missing predictors of treatment assignment, Communications in

Statistics, Theory & Methods. 2014.
6Mayer, Wager, J. Doubly robust estimation with incomplete confounders. AOAS. 2020.
7Kallus et al. Causal inf. with noisy & missing covariates via matrix factorization. Neurips. 2018.
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1. Popular multiple imputation for estimating treatment effect

X1 X2 X3 ... W Y(0) Y(1)

NA 20 10 ... 1 ? 200

-6 45 NA ... 1 10 ?

0 NA 30 ... 0 ? 150

NA 32 35 ... 0 ? 100

-2 NA 12 ... 0 20 ?

1) Generate M plausible values for each missing value

X1 X2 X3 ... W Y

3 20 10 ... 1 200

-6 45 6 ... 1 10

0 4 30 ... 0 150

-4 32 35 ... 0 100

-2 15 12 ... 0 20

X1 X2 X3 ... W Y

-7 20 10 ... 1 200

-6 45 9 ... 1 10

0 12 30 ... 0 150

13 32 35 ... 0 100

-2 10 12 ... 0 20

X1 X2 X3 ... W Y

7 20 10 ... 1 200

-6 45 12 ... 1 10

0 -5 30 ... 0 150

2 32 35 ... 0 100

-2 20 12 ... 0 20

2) Estimate Average Treatment Effect on each imputed data set with IPW: τ̂m

3) Combine the results (Rubin’s rules): τ̂ = 1
M

∑M
m=1 τ̂m

Consistency of multiple imputation with IPW8

Assume: MAR Proba to have missing depends on observed values

Classical unconfoundedness {Yi (0),Yi (1)} ⊥⊥ Wi |Xi ,

Propensity Score and model for (X | Y ,W ) correctly specified,

⇒ Multiple imputation (using (X ,W ,Y )) with IPW is consistent

8Seaman and White. 2014. IPW with missing predictors of treatment assignment,

Communications in Statistics, Theory & Methods.
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Single imputation by the mean

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 -1.93

-0.86 -1.50

..... ...

2.16 0.7

0.16 0.74

50

100

150

200

50 100 150 200
X1

X
2

µx2 = 0

σx2 = 1

ρ = 0.6

µ̂x2 = −0.01

σ̂x2 = 1.01

ρ̂ = 0.66
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Single imputation by the mean

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 0.01

-0.86 0.01

..... ...

2.16 0.7

0.16 0.01

100
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200
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X1

X
2
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FALSE

TRUE

mean imputation

µx2 = 0

σx2 = 1

ρ = 0.6

µ̂x2 = 0.01

σ̂x2 = 0.5

ρ̂ = 0.30

Mean imputation deforms joint and marginal distributions
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Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution xi2 = β0 + β1xi1 + εi , εi ∼ N (0, σ2)

▷ Regression imputation: Estimate β (here with complete data) and impute

x̂i2 = β̂0 + β̂1xi1 ⇒ variance underestimated and correlation overestimated

▷ Stochastic reg. imputation: Estimate β and σ - impute from the predictive

x̂i2 ∼ N
(
β0 + β̂1xi1, σ̂

2
)
⇒ preserve distributions

100
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2

imputed
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mean imputation
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2

imputed

FALSE

TRUE

stochastic regression imputation

µx2 = 0

σx2 = 1

ρ = 0.6

0.01

0.5

0.30

0.01

0.72

0.78

0.01

0.99

0.59



9

Impute while preserving distribution. Multivariate case

Assuming a joint distribution

▷ Gaussian model xi ∼ N (µ,Σ)

▷ Low rank : Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank

⇒ Powerful in recommendation system: Netflix prize 90% of missing

⇒ Different regularization depending on noise regime9

⇒ Count data,10 ordinal data, categorical data, blocks/multilevel data11

▷ Using optimal transport,12 deep generative models (GAIN,13 MIWAE,14 etc.)

Iterating conditional models (joint distribution implicitly defined)

▷ with multinomial, Poisson regression (ICE: Imputation by Chained Equations)

▷ iterative imputation of each variable by random forests15

9J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
10Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
11J. et al. Imputation of mixed data with multilevel SVD. JCGS. 2018.
12Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.
13Yoon et al. GAIN: Missing data imputation using generative adversarial nets. ICML. 2018.
14Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. ICML. 2018.
15Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012.
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Missing values mechanism: Rubin’s taxonomy16,17

• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA

▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

• Realizations: For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed

elements of x and while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

x⋆ = (1, 2, 3, 8, 5)

x = (1,NA,−3, 8,NA)

m = (0, 1, 0, 0, 1)

o(x ,m) = (1, 3, 8), oc(x⋆,m) = (2, 5)

16Rubin. Inference and missing data. Biometrika. 1976.
17What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013.
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Ex: Simulated missing values according to the 3 mechanisms (Orange points

will be missing) in Systolic Blood Pressure - GCS is always observed

5 10 15
Gravity score (GCS)

0

100

200

S
ys

to
lic

B
lo

od
P

re
ss

ur
e

Missing Completely at Random

(MCAR)

m ∈ M, x ∈ X ,

P (M = m|x) = P (M = m)

5 10 15
Gravity score (GCS)

0

100

200

S
ys

to
lic

B
lo

od
P

re
ss

ur
e

Missing at Random

(MAR)

∀m ∈ M, x ∈ X
P (M = m|x) = P (M = m|o(x,m))

5 10 15
Gravity score (GCS)

0

100

200

S
ys

to
lic

B
lo

od
P

re
ss

ur
e

Missing Not At Random

(MNAR)

If not MAR: it is MNAR

16Rubin. Inference and missing data. Biometrika. 1976.
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Two views to model the joint distribution of (X ,M)

Selection Model18: p∗(M = m, x) = P(M = m | x)p∗(x)

Definition (SM-MAR)

P(M = m|x) = P(M = m|o(x ,m)) for all m ∈ M, x ∈ X .

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model19: p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition (PMM-MAR)

p∗(oc(x ,m) | o(x ,m),M = m) = p∗(oc(x ,m) | o(x ,m)).

for all m ∈ M, x ∈ X . The conditional distrib. of missing given obs. in

each pattern is equal to the unconditional one.20

Proposition (SM-MAR is equivalent to PMM-MAR)

18Heckman. Sample selection bias as a specification error. Econometrica. 1979
19Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993
20Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008



11

Two views to model the joint distribution of (X ,M)

Selection Model18: p∗(M = m, x) = P(M = m | x)p∗(x)

Definition (SM-MAR)

P(M = m|x) = P(M = m|o(x ,m)) for all m ∈ M, x ∈ X .

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model19: p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition (PMM-MAR)

p∗(oc(x ,m) | o(x ,m),M = m) = p∗(oc(x ,m) | o(x ,m)).

for all m ∈ M, x ∈ X . The conditional distrib. of missing given obs. in

each pattern is equal to the unconditional one.20

Proposition (SM-MAR is equivalent to PMM-MAR)
18Heckman. Sample selection bias as a specification error. Econometrica. 1979
19Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993
20Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008



12

MAR with shift in marginal distribution between patterns

• Gaussian PMM: X ∗ | M = m ∼ N(µm | Σm). Ex: for two patterns

m1 = (0, 0) and m2 = (1, 0) and a shift:

X =

(
x1,1 x1,2

NA x2,2

)
,M =

(
0 0

1 0

)
=

(
m1

m2

)
.

• Not identifiable without constraints. PMM-MAR: the conditional

distrib. of X1 | X2 in each pattern is equal to the unconditional one

p∗(x1 | x2,M = m1)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m1)

= p∗(x1 | x2,M = m2)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m2)

= N(x2, 1)(x1) = p∗(x1 | x2).

Definition (Conditional indep. MAR - CIMAR)

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m),M = m′′)

for all m,m′,m′′ ∈ M, x .equivalent to oc(X ,M) | o(X ,M) |= M
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MAR with shifts in conditional distribution between patterns

X =

x1,1 x1,2 x1,3

NA x2,2 x2,3

NA NA x3,3

 ,M =

0 0 0

1 0 0

1 1 0

 =

m1

m2

m3


CIMAR

p∗(x1, x2 | x3,M = m1) = p∗(x1, x2 | x3,M = m2) = p∗(x1, x2 | x3,M = m3)

Distrib. of X1,X2 | X3 is not allowed to change from one pattern to

another, though the marginal distrib. of X3 can change. CIMAR allows

to learn the conditional distrib. from any pattern.

PMM-MAR

p∗(x1, x2 | x3,M = m3) = p∗(x1, x2 | x3)

Both distrib. of observed variables and conditional ones can

change from pattern to pattern.

MCAR

No change is allowed.
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Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For j ∈ {1, . . . , d}, t ≥ 1 use a univariate imputation to sample new

imputed values x
(t+1)
j ∼ p∗(xj | x (t)−j ), where x

(t)
−j = {x (t)l }l ̸=j the imputed

& observed values of other variables except j at the tth iteration.

3. Iterate until convergence

Figure 1: Source: [?]
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Fully conditional specification under MAR

• Assume x−j is well imputed: we have p∗(x−j)

• Impute by drawing from the conditional distrib. of Xj | X−j learned

from all patterns in which xj is observed:

h∗(xj | x−j) =
∑
m∈Lj

P(M = m)∑
m∈Lj

p∗(x−j | M = m)P(M = m)
p∗(x | M = m),

with Lj = {m ∈ M : xj ∈ o(x ,m)} the patterns where xj is observed

Theorem: Identifiability (Näf et al., 2024)

Assume PMM-MAR holds,

h∗(xj | x−j) = p∗(xj | x−j), for all x−j with p∗(x−j) > 0

⇒ In a population setting (perfect estimation), FCS identifies the

right distributions to impute missing values under MAR.

Remark: Different from learning the conditional distributions from the

fully observed data and then impute the missing variables.
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What is a good imputation method?

▷ both conditional and marginal distribution shifts can occur for

different patterns under MAR.

▷ conditional shifts are handled with FCS

An ideal imputation method should

▷ (1) be a distributional regression method,

▷ (2) be able to capture nonlinearities in the data,

▷ (3) be able to deal with distributional shifts in the observed variables,

▷ (4) be fast to fit,

▷ (5) the method is able to deal with multivariate responses.

1-3 are crucial for imputation under MAR

4-5 are only relevant to reduce the computational burden.
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What is a good imputation method?

(1) be a distributional regression method,

(2) be able to capture nonlinearities in the data,

(3) be able to deal with distributional shifts in the observed variables,

(4) be fast to fit,

(5) the method is able to deal with multivariate responses.

Method (1) (2) (3) (4) (5)

missForest (Stekhoven & Bühlmann, 2011) ✓ ✓

mice-cart (Burgette & Reiter, 2010) ✓ ✓ ✓

mice-RF (Doove et al., 2014) ✓ ✓ ✓

mice-DRF (Näf et al., 2024) ✓ ✓ ✓ ✓

mice-norm.nob (Gaussian) ✓ ✓ ✓ ✓

mice-norm.predict (Regresssion) ✓ ✓ ✓

▷ mice-cart/RF estimate a tree, a forest, on observed data and then draw

imputations from the leaves (approx conditional distribution) whereas

distributional forest21 is a distributional method

21Cevid et al., Distributional Random Forests. JMLR. 2022
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Forests generalize poorly outside of the training set

Ex: Variables income & age with MAR missing values in income

Figure 2: True distribution against a draw from different imputation methods.

DRF, a distributional method > mice-RF but fails to deal with the

covariate shift (centering ≈ 2 instead of 5).

Finding an imputation method that meets (1) - (5) is still an open

problem!
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Empirical study: ranking with energy scores and not RMSE

Gaussian relation with shifts Non linear relation with shifts

Ex with d = 6, n = 1500, 20% NA and CIMAR, XOc = Bf (XO) +

ε1

ε2

ε3

 ,

Energy distance between imputed & real data

d(H,P∗) = 2E[∥X − Y ∥Rd ]− E[∥X − X ′∥Rd ]− E[∥Y − Y ′∥Rd ],

where ∥ · ∥Rd is the Euclidean metric on Rd , X ∼ H, Y ∼ P∗ and X ′,Y ′ are

independent copies of X and Y .
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Empirical study: ranking with energy scores and not RMSE

credit: Krystyna Grzesiak, Michal Burdukiewicz22 230 scenarios (10

missing values patterns 23 different-sized datasets)

22imputomics: web server and R package for missing values imputation in

metabolomics data. Bioinformatics 2024.
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Conclusion

▷ Non-parametric PMM view of missing (different environments) helps

understand non-parametric imputation under MAR

▷ Identification result for FCS: the right conditional distributions are

identifiable under MAR with no parametric assumption

▷ Identification under the weakest MAR assumption.23 Link between all

MAR (MAR is broad): CIMAR, Extended MAR (EMAR), PMM-MAR

▷ 5 points the ideal sequential imputation method should meet

▷ The quest for an imputation method meeting all 5 points is still open

▷ mice-DRF promising (code available)

▷ Imputation scores with missing values that are proper under MAR:

ranking imputation methods

Impact for causal inference

23Deng et al., (2022) and Fang (2023) showed identifiability for GAN imputation under CIMAR
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Thank you
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Causal identifiability assumptions adapted to missing values

http://www.dagitty.net/

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 ? 200

-6 45 NA 0 10 ?

0 NA M 1 ? 150

NA 32 F 1 ? 100

1 63 M 1 15 ?

-2 NA M 0 20 ?

Unconfoundedness: {Yi (1),Yi (0)} ⊥⊥ Wi |X ⋆

⇒ Doctors give us the DAG (do not ask for the complete graph only for a

sufficient adjustment set), obtained by a Delphi method

Unconfoundedness with missing values: {Yi (1),Yi (0)} ⊥⊥ Wi |X
X = (1−M)⊙ X ⋆ +M ⊙ NA; with Mij = 1 if Xij is missing, 0 otherwise

⇒ Doctors decide to treat a patient based on what they observe/record. We

have access to the same information as the doctors
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2. Augmented IPW under unconfoundeness with missing values

Augmented IPW24 with missing values

τ̂ = 1
n

∑
i

(
µ̂(1)(Xi )− µ̂(0)(Xi ) +Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)
Generalized propensity score25

e(x) = P(W = 1 |X = x)

One model per pattern:
∑

m∈{0,1}d E
[
W |Xobs(m),M = m

]
1M=m

⇒ Supervised learning with missing values2627

• Learning with a universally consistent learner on (Mean) imputed data

is Bayes consistent for all missing data mechanism

• Missing incorporate in attributes (MIA) for tree methods (grf package)

24Mayer, Wager, J. Doubly robust treat. effect estim. with incomplete confounders AOAS. 2020.
25Rosenbaum & Rubin. Reducing bias in observational studies JASA. (1984).
26J. et al. Consistency of supervised learning with missing values. Stats Papers. 2028-24.
27Le Morvan, J. et al. What’s a good imputation to predict with missing values? Neurips 2021.
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ATE estimations: effect of tranexamic acid on in-ICU mortality

• 40 covariates, 18 confounders (categorical and quantitative). 8248 patients

• Multiple imputation assumes MAR & classical unconfoundeness while other

unconfoundeness with missing & (no) assumptions on missing mechanism

x-axis: Estimat. of the ATE (×100), bootstrap CI, y -axis: Methods with logistic regression or

forests for nuisances. Missing values handled with multiple imputation or MIA25

25Other estimators (latent confounding, Kallus 2018 or parametric models with EM algorithms

Jiang, J. 2019) are available bur not displayed for clarity (all tend to a slightly detrimental effect)
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Imputing with a mixture of patterns

X =

x1,1 x1,2 x1,3

x2,1 NA x2,3

NA x3,2 x3,3

 ,M =

0 0 0

0 1 0

1 0 0

 =

m1

m2

m3

 .

whereby (X1,X2,X3) are independently uniformly distributed on [0, 1].

P(M = m1 | x) = P(M = m1 | x1) = x1/3

P(M = m2 | x) = P(M = m2 | x1) = 2/3− x1/3

P(M = m3 | x) = P(M = m3) = 1/3.
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Imputing with a mixture of patterns

We want to impute X1 in the third pattern (with X2 and X3 observed)

Figure 3: Distrib. of X1 in different patterns. Left: Distrib. of X1 | M = m3.

Middle: (X1 | M = m1). Right: Distribution of all patterns for which X1 is

observed (Mixture of the distribution of X1 in pattern 1 and 2).

• As the distrib. of (X2,X3) in each patterns is the same, this shows the

change of X1 | X2,X3 from m3 to m1: PMM-MAR allows change in the

conditional distrib. over patterns.

• Note that the distrib. X1 | X2,X3 in m3 corresponds to the mixture of

distribution of X1 | X2,X3 in the patterns where X1 is observed.


